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Abstract 
Quadratic Surveys (QSs) elicit more accurate preferences than tra-
ditional methods like Likert-scale surveys. However, the cognitive 
load associated with QSs has hindered their adoption in digital 
surveys for collective decision-making. We introduce a two-phase 
“organize-then-vote” QS to reduce cognitive load. As interface de-
sign significantly impacts survey results and accuracy, our design 
scaffolds survey takers’ decision-making while managing the cog-
nitive load imposed by QS. In a 2x2 between-subject in-lab study 
on public resource allotment, we compared our interface with a 
traditional text interface across a QS with 6 (short) and 24 (long) 
options. Two-phase interface participants spent more time per op-
tion and exhibited shorter voting edit distances. We qualitatively 
observed shifts in cognitive effort from mechanical operations to 
constructing more comprehensive preferences. We conclude that 
this interface promoted deeper engagement, potentially reducing 
satisficing behaviors caused by cognitive overload in longer QSs. 
This research clarifies how human-centered design improves pref-
erence elicitation tools for collective decision-making. 

CCS Concepts 
• Human-centered computing → Collaborative and social 
computing systems and tools; Collaborative and social com-
puting design and evaluation methods; HCI design and eval-
uation methods; Interactive systems and tools; Empirical 
studies in interaction design. 
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1 Introduction 
Designing intuitive survey interfaces is crucial for accurately cap-
turing respondents’ preferences, which directly impact the quality 
and reliability of the data collected. Recent Human-Computer Inter-
action (HCI) studies highlight how certain survey response formats 
can increase errors [43, 66] and influence survey effectiveness [93]. 
In this paper, our goal is to introduce an effective interface for 
a Quadratic Survey (QS), a survey tool designed to elicit prefer-
ences more accurately than traditional methods [7]. Despite the 
promise of QSs, there has been no research on designing interfaces 
to support their unique quadratic mechanisms [31], where partic-
ipants must rank and rate items — a task that poses significant 
cognitive challenges. To popularize QSs and ensure high-quality 
data, this paper addresses the question: How can we design interfaces 
to support participants in completing Quadratic Surveys (QSs) more 
effectively? 

We envision an effective interface that navigates participants 
through the complex mechanism and preference construction pro-
cess, tailored to a QS. A QS improves accuracy in individual prefer-
ence elicitation compared to traditional methods like Likert scales 
by requiring participants to make trade-offs using a fixed budget 
of credits, where purchasing 𝑘 votes for an option in QS costs 𝑘 2 

credits [7, 68]. This quadratic cost structure forces respondents to 
carefully evaluate their preferences, balancing the strength of their 
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Figure 1: The Two-Phase Interface: The interface consists of two phases. Survey respondents can navigate between phases 
using the top right button. In the organization phase, the interface presents one option at a time to the respondents, and they 
chose one of four positional choices: “Lean Positive”, “Lean Neutral”, “Lean Negative”, or “Skip”. Skipped options are hidden 
and can be evaluated later. The chosen options then appear below. Items can be dragged and dropped across categories or 
returned to the stack. In the voting phase, options are listed in the order of the four categories. When hovering over each option, 
respondents can select a vote for that option using a dropdown menu. Each dropdown menu contains the cost associated with 
the vote. A sort button allows ascending sorting within each category. A summary box tracks the remaining credit balance. 
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support or opposition against the limited budget. However, the pro-
cess of making these thoughtful trade-offs introduces challenges. 
As individual preferences are often constructed when presented 
with the options [49], the act of weighing costs, evaluating options, 
and constructing rankings increases cognitive load. Moreover, QSs, 
often referred to as Quadratic Voting (QV) in voting scenarios, can 
involve hundreds of options [74, 87], increasing the risk of cognitive 
overload and the taking of mental shortcuts [63, 80, 92]. 

To date, existing quadratic mechanism-powered applications 
simply present options, allow vote adjustments and automatically 
calculate votes, costs, and budget usage. Such designs focused heav-
ily on the mechanics operating the tool, rather than supporting 
possible challenges these application users faced. Survey inter-
face literature, while addressing decision-making and usability, 
focuses on traditional surveys that do not share the unique option-
to-option trade-offs that a QS introduces [19, 21, 41, 66, 91, 97]. 
Prior research in HCI and beyond explored techniques to man-
age cognitive load [50, 60, 62, 72, 91] and scaffold challenging 
tasks [36, 42, 46, 101] showing promise in supporting preference 
construction with a QS. Thus, this study aims to bridge this gap. 

We propose a novel interactive two-phase “organize-then-vote” 
QS interface (referred to as the two-phase interface for short, Fig-
ure 1), which was developed through multiple iterations. It aims to 
facilitate preference construction and reduce cognitive load when 
making trade-offs through three key elements. First, the interface 
scaffolds the preference construction process by having participants 
initially categorize the survey options into “Lean Positive,” “Lean 
Neutral,” or “Lean Negative.” This serves as a cognitive warm-up, 
easing participants into the more complex QS voting task. Second, 
the interface arranges the options according to these categoriza-
tions, providing a structured visual layout. Third, participants can 
refine the positions of these options using drag-and-drop function-
ality, giving them greater control and agency in the preference-
construction process. 

To explore how these interface elements affect cognitive load 
and support preference construction in QSs, we pose the following 
research questions: 

RQ1. How does the number of options in Quadratic Surveys im-
pact respondents’ cognitive load? 

RQ2a. How does the two-phase interface impact respondents’ cog-
nitive load compared to a single-phase text interface? 

RQ2b. What are the similarities and differences in sources of cogni-
tive load across the two interfaces? 

RQ3. What are the differences in Quadratic Survey respondents’ 
behaviors when coping with long lists of options across the 
two-phase interface and the single-phase text interface? 

We invited 41 participants to a lab study comparing our two-
phase interface with a baseline to understand how different inter-
face designs and option lengths (6 options or 24 options) impact 
cognitive load. 

Self-reported cognitive load using the NASA Task Load Index 
(NASA-TLX) and semi-structured interviews identified common 
challenges in QS, such as preference construction and budget man-
agement, while highlighting differences between text and two-
phase interfaces. The two-phase interface fostered more strategic 
engagement with survey options, encouraging consideration of 

broader impacts in the long QS, reducing time pressure in the short 
QS, and eliciting greater affirmative satisfaction (e.g., "feeling good"). 
Quantitative results support these observations: participants in the 
two-phase interface—particularly in long surveys—traversed the 
list less frequently but maintained the same number of edits while 
spending more time per option. This suggests that reduced traversal 
did not diminish engagement. Together, these findings highlight 
the organizing phase’s role in fostering deeper engagement with 
survey options. 

Contributions. We contribute to the body of knowledge in the 
HCI community by proposing the first interface specifically de-
signed for QS and QV-like applications, which aims to reducing cog-
nitive challenges and scaffolding preference construction through 
a two-phase interface with direct manipulation. Before our work, 
no research had explored QS interfaces. This is particularly impor-
tant for long QSs, which are prone to cognitive overload. Few HCI 
studies have addressed interfaces for surveys and questionnaires. 
Our study demonstrates how user interfaces can facilitate prefer-
ence construction in situ and promote deeper engagement with 
survey options through interface elements. Additionally, this paper 
offers the first in-depth qualitative analysis of user experiences with 
Quadratic Mechanism applications, identifying usability challenges 
and key factors contributing to cognitive load. The impact of our 
contribution extends beyond QSs, offering design implications for 
other preference-elicitation tools used in multi-option scenarios. By 
making QSs easier to use and more accurate, our design encourages 
wider adoption among researchers and practitioners. Finally, our 
work lays the groundwork for future Quadratic Mechanism inter-
face design to facilitate individuals expressing their preferences. 

2 Related Work 
This research lies at the intersection of three core areas: quadratic 
surveys, existing QV interfaces and choice overload along with 
cognitive challenges. In this section, we review the related works 
in each of these areas. 

2.1 Quadratic Survey and the Quadratic 
Mechanism 

We introduce the term Quadratic Survey (QS) to describe surveys 
that utilize the quadratic mechanism to collect individual attitudes. 
The quadratic mechanism is a theoretical framework designed to 
encourage the truthful revelation of individual preferences through 
a quadratic cost function [31]. This framework gained popularity 
through Quadratic Voting (QV), also known as plural voting, 
which uses a quadratic cost function in a voting framework to 
facilitate collective decision-making [47]. 

To illustrate how QS works, we formally define the mechanism: 
each survey respondent is allocated a fixed budget, denoted by 𝐵, 
to distribute among various options. Participants can cast 𝑛 votes 
for or against option 𝑘 . The cost 𝑐𝑘 for each option 𝑘 is derived as: 

𝑐𝑘 = 𝑛 2 
𝑘 where 𝑛𝑘 ∈ Z 

The cost of all votes must not exceed the participant’s budget: ∑︁ 

𝑘 

𝑐𝑘 ≤ 𝐵 
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Figure 2: A selection of two QV interfaces. The interface on the left was used in the first empirical QV research [68]. Little 
information is available about the software, except for an image from Posner and Weyl [67]. The interface on the right is an 
open-sourced QV interface [71] forked from GitCoin [30], used by the RadicalxChange community [70]. Both interfaces share 
the common elements with different visual representations. 

Survey results are determined by summing votes for each option: 

Total Votes for Option 𝑘 = 
𝑆∑︁ 

𝑖=1 

𝑛 𝑖,𝑘 

where 𝑆 represents the total number of participants, and 𝑛 𝑖,𝑘 is the 
number of votes cast by participant 𝑖 for option 𝑘 . Each additional 
vote for each option increases the marginal cost linearly, encourag-
ing participants to vote proportionally to their level of concern for 
an issue [67]. 

QS adapts these strengths of the quadratic mechanism in voting 
to encourage truthful expression of preferences in surveys. Un-
like traditional surveys that elicit either rankings or ratings, QS 
allows for both, enabling participants to cast multiple votes for 
or against options, incurring a quadratic cost. Cheng et al. [7] 
showed that this mechanism aligns individual preferences with 
behaviors more accurately than Likert Scale surveys, particularly 
in resource-constrained scenarios like prioritizing user feedback 
on user experiences. 

In recent years, empirical studies on QV have expanded into vari-
ous domains [4, 56]. Applications based on the quadratic mechanism 
have also grown, including Quadratic Funding, which redistributes 
funds based on outcomes from consensus made using the quadratic 
mechanism [2, 26]. Recent work by South et al. [82] applies the 
quadratic mechanism to networked authority management, later 
used in Gov4git [18]. Despite the increasing breadth and depth 
of applications utilizing the quadratic mechanism, little attention 
has been paid to user experience and interface design, which sup-
port individuals’ preference intensity elicitation. Our work aims to 
address this by designing interfaces for quadratic mechanisms. 

2.2 Existing QV Interfaces 
Since QS shares QV’s underlying mechanism, we used snowball 
sampling to identify publicly available QV applications mentioned 
in news and academic sources. Currently, no widely adopted QV 
interface is tied to a single vendor or platform. Figure 2 shows two 
variations of existing QV interfaces, with both employing a single-
step approach with different visual representations of common 
elements [4, 7, 18, 100]. All QV interfaces generally include: 
• Option list: A list of options for voting. 
• Vote controls: Buttons to add or remove votes for each option. 
• Individual vote tally: A display of the votes cast per option. 
• Summary: A summary of costs and the remaining budget. 

These components let users operate QV mechanically, providing 
little understanding of voters’ usability needs nor offering cogni-
tive support. In addition, HCI research on survey interfaces is lim-
ited [57, 94] with most efforts focusing on alternative input modali-
ties like bots, voice interfaces, or virtual reality [23, 40, 43, 96]. 

2.3 Cognitive Challenges and Choice Overload 
The challenge of respondents making difficult decisions using qua-
dratic mechanisms remains unexplored in the literature. Lichten-
stein and Slovic [49] identified three key elements that make deci-
sions difficult. These elements include making decisions in unfa-
miliar contexts, quantifying the value of one’s opinions, and being 
forced to make trade-offs due to conflicting choices. QS fits at least 
two of the three elements: participants may encounter a selection 
of unfamiliar options by the survey designer; they are asked to 
quantify the difference between option preferences through a nu-
merical vote; and the budget constraint enforces trade-offs under 
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a non-linear function, which means that a vote decrease for one 
option is not necessary equivalent to an increase for another, mak-
ing iterative adjustment and evaluating tradeoffs difficult. Thus, we 
believe QS introduces a high cognitive load. 

Cognitive load refers to the demands placed on a user’s work-
ing memory during the interaction process, which significantly 
influences the usability of the system [12, 78]. Cognitive overload 
can adversely affect performance [17], leading individuals to rely 
on heuristics rather than deliberate, logical decision-making [15]. 
When presented with excessive information, such as too many op-
tions, individuals ’satisfice’, settling for a ’good enough’ solution 
rather than an optimal one [63, 80, 92]. Subsequently, too many 
options can overwhelm individuals, resulting in decision paralysis, 
demotivation, and dissatisfaction [37]. 

Additionally, Alwin and Krosnick [1] highlighted that the use of 
ranking techniques in surveys can be time-consuming and poten-
tially more costly to administer. These challenges are compounded 
when ranking numerous items, requiring substantial cognitive so-
phistication and concentration from survey respondents [22]. 

Notable applications of QV include the 2019 Colorado House, 
which considered 107 bills [14], and the 2019 Taiwan Presidential 
Hackathon, which featured 136 proposals [65]; both used a single 
QV question with hundreds of options. These empirical applications 
of QV suggest the importance of understanding QS with many 
options’ impact on cognitive load and support developing interfaces 
for practical uses. 

3 Quadratic Survey Interface Design 
This section presents our QS interface. Drawing on existing QV 
interfaces described in Section 2.2 and prior literature, we iterated 
through paper prototypes and three design pre-tests, detailed in 
Appendix A. Initially, participants struggled to rank relative pref-
erences among options and rate the degree of trade-offs between 
them. In this study, we focus on addressing the former challenge, 
which pertains to preference construction. 

3.1 ‘Organize-then-Vote’: The Two-Phase 
Interface 

3.1.1 Justifying a two-phase approach. The main objective of the 
two-phase interface is to facilitate preference construction and 
reduce cognitive load. As shown in Figure 1, the interface consists 
of two steps: an organization phase and a voting phase. In both 
phases, survey respondents can drag and drop options across the 
presented list. 

A two-phase approach. Preferences are shaped through a se-
ries of decision-making processes [49]. Two decision-making theo-
ries inspired this two-step interaction interface design: Montgomery 
[53]’s Search for a Dominance Structure Theory (Dominance The-
ory) and Svenson [85]’s Differentiation and Consolidation Theory 
(Diff-Con Theory). The former suggested that decision-makers pri-
oritize creating dominant choices to minimize cognitive effort by 
focusing on evidently superior options [53]. The latter described a 
two-phase process where decisions are formed by initially differ-
entiating among alternatives and then consolidating these distinc-
tions to form a stable preference [85]. Pre-tests showed participants 

puzzled by ranking all options before voting. These theories sug-
gest decisions emerge by eliminating choices, not by fully ranking 
them. Therefore, the organize-then-vote design makes this nat-
ural process more explicit. Phase one focused on differentiating 
and identifying dominant options, enabling survey respondents 
to preliminarily categorize and prioritize their choices. Phase two 
presented these categorized options in a comparable manner, with 
drag-and-drop functionality, enhancing one’s ability to consoli-
date preferences. This structured approach aimed to construct a 
clear decision-making procedure that reduced cognitive load and 
enhanced clarity and confidence in the decisions made. 

Phase 1: Organization Phase. The goal of the organization phase 
was to support participants in identifying clearly superior options 
or partitioning choices into distinguishable groups. In this section, 
we first describe how the interaction works, then we detail the 
reasons for the implemented design decisions. 

The organizing interface, depicted on the top half of Figure 1, 
sequentially presents each survey option. Participants select a re-
sponse among three ordinal categories – “Lean Positive”, “Lean 
Negative”, or “Lean Neutral”. Once selected, the system moves that 
option to the respective category. Participants can skip the option 
if they do not want to indicate a preference. Options within the 
groups are draggable and rearrangeable to other groups should the 
participants wish. 

To support preference formation, respondents are shown one 
option at a time, allowing them to either recall a prior judgment or 
construct a new one based on the presented choices [83]. Limiting 
the information presented this way also helps reduce cognitive 
load by preventing overload from too many options [86]. This 
incremental process ensures that participants form opinions on 
individual options. 

The three possible options — Lean Positive, Lean Neutral, and 
Lean Negative — aim to scaffold participants in constructing their 
own choice architecture [55, 88], which strategically segments op-
tions into diverse and alternative choice presentations while avoid-
ing biases from defaults. We believed that these three categories 
were sufficient for participants to segment the options. We do not 
limit the number of options one can place in each category to prior-
itize user agency, allowing participants full control over how they 
organize their preferences [58]. Immediate feedback displays the 
placement of options and allows participants to rearrange them via 
drag-and-drop, adhering to key interface design principles [58]. It 
also allows finer-grain control for individuals to surface dominating 
options and create differentiating groups of options. 

Phase 2: Interactive Voting Phase. The objective of the voting 
phase is to facilitate the consolidation of differentiated options 
through interactive elements while reinforcing the differentiation 
across options constructed by participants in the previous phase. 
This facilitation is achieved by retaining the drag-and-drop func-
tionality for direct manipulation of position and enabling sorting 
within each category. 

Options are displayed as they are categorized within each cate-
gory from the previous step and in the following section — Lean 
Positive, Lean Neutral, Lean Negative, and Skipped or Undecided 
— as detailed on the bottom half of Figure 1. The Skipped or Un-
decided category contains options left in the organization queue, 
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possibly because survey respondents have a pre-existing preference 
or chose not to organize their thoughts further. The original order 
within these categories is preserved to maintain and reinforce the 
differentiated options. This ordering sequence mitigated early pro-
totype concerns where uncategorized options were left at the top 
of the voting interface confusing survey respondents. Respondents 
have the flexibility to return to the organization interface at any 
point during the survey to revise their choices. 

In the voting interface, options are draggable, allowing partici-
pants to modify or reinforce their preference decisions as needed. 
Each category features a sort-by-vote function for reordering within 
the group, which, although it doesn’t affect the final outcome, sup-
ports information organization and consolidation. Both features aim 
to group similar options automatically and emphasize proximity, 
reducing cognitive load by following the proximity compatibility 
principle to enhance decision-making [99]. 

While multiple interaction mechanisms exist, drag-and-drop has 
been extensively explored in rank-based surveys. For instance, Kros-
nick et al. [44] demonstrated that replacing drag-and-drop with tra-
ditional number-filling rank-based questions improved participants’ 
satisfaction with little trade-off in their time. Similarly, Timbrook 
[89] found that integrating drag-and-drop into the ranking process, 
despite potentially reducing outcome stability, was justified by the 
increased satisfaction and ease of use reported by respondents. The 
trade-off was deemed worthwhile as QSs did not use the final posi-
tion of options as part of the outcome if it significantly enhanced 
user satisfaction and usability [73]. Together, these design decisions 
led to our belief that a two-phase interface with direct interface ma-
nipulation could reduce the cognitive load for survey respondents 
to form preference decisions when completing QSs. 

Figure 3: Alternative vote control. The click-based design 
(upper) mirrors traditional vote control used in other QV 
interfaces, where each click controls one vote. The wheel-
based design (the latter two) allows control through both 
clicks and mouse wheel rotation. 

In addition, we made three aesthetic design decisions consider-
ing existing QV-based interfaces. First, we removed visual elements 
like icons, emojis, progress bars, and vote visualizations, as prior re-
search indicated that emojis could influence survey interpretations 
and reduce user satisfaction [35, 91]. While effective visualizations 
can aid decision-making, this study does not aim to address that 
question. Second, all options are visible on the screen simultane-
ously. Prior research recommends placing all items on the voting 

screen to prevent overlooked votes [5]. This echoes the proverb 
“out of sight, out of mind,” reducing where individuals might be 
biased toward visible options, and additional effort is required for 
individuals to retrieve specific information if options are hidden. 
Last, use a dropdown positioned to the right of each survey option 
for ease of access to the budget summary when determining the 
votes. The layout of the votes and cost was inspired by online shop-
ping cart checkout interfaces where quantities are supplied next 
to the itemized costs followed by the total checkout amount. Fig-
ure 3 shows the two alternatives—click-based buttons (participants 
disliked multiple clicks) and a wheel-based design (unfamiliar to 
some)—and settled on the dropdown. 

3.2 Baseline Interface: Single-Phase Text 
Interface 

We created a single-phase text interface (referred to text interface 
for short, Figure 4) as a control, enabling us to see how organi-
zational features affect cognitive load and behavior. Like existing 
interfaces, it uses static lists, a summary box, and a vote control. To 
ensure a fair comparison, we applied the same design principles: no 
extraneous visuals, all options on one screen, and dropdown-based 
voting. The prompt appears at the top, followed by a randomly 
ordered list to prevent ordering bias [13, 24]. Costs and the credits 
summary appear on the right. 

Both experimental interfaces were developed with a ReactJS 
frontend and a NextJS backend powered by MongoDB. We open-
source both interfaces.1 

4 Experiment Design 
In this section, we describe our experiment design. The study was 
approved by the university’s Institutional Review Board (IRB). 

4.1 Recruitment and Participants 
We recruited 41 participants from a United States college town using 
online ads, digital bulletins, social media posts, email newsletters, 
and physical flyers in public spaces beyond campus. We described 
the study as exploring societal attitudes to reduce response bias. 
One participant was excluded due to data quality concerns2 . 

To ensure diversity, we prioritized non-students by selectively ac-
cepting them and monitoring demographic distribution. The mean 
participant age was 34.63 years, with an age distribution similar to 
the county’s demographic profile (Figure 5a), although there was a 
slightly higher representation of younger adults. Gender and race 
demographics are presented in Figures 5b and 5c. Demographic 
differences between groups were reasonably balanced, although 
participants using the short text interface skewed slightly younger 
(𝜇=32.1), and those in the long two-phase interface group had a 
broader age range (𝜇=38.8, 𝜎 =19.6). Appendix D contains full details. 

4.2 Experiment Design 
We implemented a between-subject design to avoid learning effects 
and minimize participants’ fatigue from potential complexity of QSs. 
The experiment focused on public resource allotment, following the 

1https://github.com/CrowdDynamicsLab/Quadratic-Survey-Frontend
2The participant reported not completing the survey seriously, as they believed the 
experiment was fake. 

https://1https://github.com/CrowdDynamicsLab/Quadratic-Survey-Frontend
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Figure 4: The text-based interface: This interface is based on the two-phase version but does not include the organization phase 
and lacks the drag-and-drop functionality. Options are randomly positioned. 

methodology of Cheng et al. [7], in which participants expressed 
preferences across societal issues. These issues are relevant to all 
citizens and effectively highlight the need to prioritize limited pub-
lic resources. Participants received a survey with options randomly 
drawn from the 31 societal topics evaluated by Charity Naviga-
tor [6], an organization that assesses over 20,000 charities in the 
United States (see Appendix C for the full list). Randomly selecting 
the options each participant saw helped control for potential sys-
tematic content biases that specific voting options might introduce 
across surveys of different lengths. Participants were randomly 
assigned to one of four groups, each with 10 participants: 

• Short Text (ST): A text interface with 6 options. 
• Short Two-Phase (S2P): A two-phase interface 6 options. 
• Long Text (LT): A text-based interface 24 options. 
• Long Two-Phase (L2P): A two-phase interface with 24 options. 

Prior research informed the choice of 6 and 24 options, represent-
ing short and long lists. These studies recommend fewer than 10 
options for constant-sum surveys [54] and fewer than 7 for the Ana-
lytic Hierarchy Process [76]. Classic cognitive load research [52, 77] 
suggests the use of 7±2 items. A meta-analysis by Chernev et al. 
[8] identified 6 and 24 as common values for short and long lists 
in choice overload studies, which are rooted in the original choice 
overload experiment by Iyengar and Lepper [37]. 

4.3 Experiment Procedure 
Participant’s spent on average 40 minutes (range: 27−68, 𝜎 =9) in 
the lab. Figure 6 visually represents the study protocol detailed in 
the following subsections. 

4.3.1 Consent, Instructions, and Quiz. Participants were invited to 
the lab to control for external influences and used a 32-inch verti-
cal monitor to display all options. After consenting, participants 
watched a video explaining the quadratic mechanism without any 
mention of the interface’s operation, followed by a quiz to ensure 
understanding. Participants rewatched the video or consulted the 
researcher until they successfully selected the correct answers. Each 
participant’s screen was captured throughout the study. 

4.3.2 Quadratic Survey. The researcher informed participants that 
the study aimed to help local community organizers understand 
preferences on societal issues to improve resource allocation. Aware 
that their screens were being recorded, participants completed 
the survey independently inside a semi-enclosed space in the lab, 
without the researcher’s presence. Once they completed the survey, 
participants notified the researcher. 

4.3.3 NASA-TLX Survey and Interview. The researcher joins study 
participant and administer a paper-based weighted NASA Task 
Load Index (NASA-TLX), followed by a semi-structured interview 
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Figure 5: Demographic distributions: Age, Gender, and Ethnicity 
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Figure 6: Study protocol: Participants are asked to learn about the mechanism of QSs after consenting to the study. The 
researcher explained the study overview and asked participants to complete the QS. A NASA-TLX survey followed by interviews 
to understand participants’ cognitive load. We debriefed participants after the study. 

after being informed that the researcher would begin audio record-
ing with their laptop. We adopted the paper-based weighted NASA-
TLX, a widely used multidimensional tool that averages six sub-
scale scores to measure overall workload after task completion [3, 
33, 34]. NASA-TLX is favored for its low cost and ease of admin-
istration [27], and it exhibits less variability compared to one-
dimensional workload scores [75], making it suitable for our study. 

While cognitive load can be assessed through psychophysio-
logical, performance, subjective, and analytical measures [27], the 
length and complexity of QSs make some of these impractical. 

Performance and analytical measures require task switching or in-
terruptions, which risk increasing overall cognitive load and exper-
iment time. Psychophysiological measures, such as pupil size [61] 
and ECG [32], are costly, sensitive to external factors, and often 
require participants to wear additional equipment. 

4.3.4 Demographic, Debrief, and Compensation. After the inter-
view, the researcher collected participant’s demographics and de-
briefed them, explaining that the study’s goal was to understand 
interface design and cognitive load. Participants received a $15 cash 
compensation. 
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4.4 Quantitative Measures: Clickstream Data 
Besides using NASA-TLX and interviews to capture cognitive load, 
we also recorded participants’ clickstream data from the interface 
(i.e., each click and the corresponding UI component). These log 
data enabled us to analyze how participants navigated and engaged 
with the survey options. 

Edit Distance. We introduce three related metrics—edit distance 
per option, edit distance per action, and cumulative edit distance— 
to quantify the distance participants traveled across the interface. 
Edit distance per option sums the total number of options traversed 
while modifying a single vote option, edit distance per action mea-
sures the distance traversed during each individual adjustment, 
and cumulative edit distance captures the total distance traversed 
throughout the entire survey. The formal definitions and modeling 
approach are provided in Section 6. 

Time Spent per Option. In addition, we computed the total time 
participants spent interacting with each specific option by aggre-
gating the time spent on that specific option during the survey. We 
describe and discuss these findings in Section 7. 

5 Result: Self-Reported Cognitive Load in 
Quadratic Surveys 

This section presents findings on cognitive load in QSs, focusing 
on how the number of options and different interfaces influence it 
(RQ1, RQ2a). We analyze similarities and differences in cognitive 
load sources across conditions (RQ2b). 

Qualitative findings are based on an inductive thematic anal-
ysis [59], which was conducted after transcribing the interviews. 
The first author single-coded the snippets according to the research 
questions and merged them into overarching themes. The first 
author conducted multiple rounds of coding, and identified differ-
ences across conditions, which were refined and validated using a 
deductive coding process. 

Quantitative findings are derived from a Bayesian approach, 
which enhances transparency by interpreting posterior distribu-
tions and moving beyond binary thresholds [39]. Bayesian methods 
suit various sample sizes, leveraging maximum entropy priors to 
ensure conservative and robust inferences [51]. 

5.1 Overall Cognitive Load from NASA-TLX 
Weighted NASA-TLX uses a continuous 0 to 100 score, with higher 
values denoting greater cognitive load. We use predefined mappings 
of NASA-TLX scores to cognitive levels: low, medium, somewhat 
high, high, and very high, as described by Hart and Staveland [34]. 
Results are shown in Figure 7a, with value interpretations presented 
in Figure 7b. 

Given the sparsity of the data, we modeled the weighted NASA-
TLX scores as ordinal outcomes based on value interpretations. We 
developed a hierarchical Bayesian ordinal regression model with 
length as an ordinal predictor and interface type as a categorical 
predictor, using hierarchical priors for partial pooling. Interaction 
effects between length and interface are captured via a non-centered 
parameterization with an LKJ prior to account for correlations [51]. 
We applied the same model to the NASA-TLX subscales; since 
these subscales lack inherent cognitive level interpretations, we 

constructed weighted bins for the ordinal regression. In our model, 
a latent variable represents a continuous measure of cognitive load, 
discretized into ordinal outcomes via thresholds. Details of this 
model and additional subscale results are provided in Appendix G. 

In Bayesian analysis, the 94% high-density interval (HDI) repre-
sents the range where the true parameter is most likely to lie. While 
the results (Figure 8) in terms of differences in latent cognitive load 
are not statistically significant because 0 is within this range, the 
HDI quantifies probabilistic trends and accounts for uncertainty in 
a transparent manner. 
• Increased option length with text interface trends to reduced cog-
nitive load with a posterior probability of approximately 84.5%. 
This reflects a median cognitive load of 33.85 (mean = 34.60, SD = 
17.69) compared to a median of 39.00 (mean = 43.23, SD = 17.65). 

• Within short QSs, the two-phase interface trends to reduced cog-
nitive load, with a posterior probability of 77.6% supporting the 
reduction. Participants report a median cognitive load of 29.85 
(mean = 35.36, SD = 18.17) under the two-phase interface com-
pared to a median of 39.00 (mean = 43.23, SD = 17.65) under the 
text interface. 

• For the long QSs, the two-phase interface trends an increase in 
cognitive load with a posterior probability of 62.7%. The median 
cognitive load is 42.70 (mean = 42.02, SD = 18.48) under the two-
phase interface compared to 33.85 (mean = 34.60, SD = 17.69) in 
the text interface. 
This result contradicts our hypothesis that more options would 

increase cognitive load and that interfaces can reduce it. Thus, 
we explore qualitative results to identify possible explanations. To 
understand the similarities and differences in sources of cognitive 
load (RQ2b), we analyze qualitative results across the six NASA-
TLX subscales: mental demand, physical demand, temporal demand, 
effort, frustration, and performance. Detailed breakdown of each 
subscale are provided in Appendix E. 

5.2 Qualitative Analysis: Common Sources of 
Cognitive Load 

Our analysis reveals several themes across different cognitive load 
subscales. We focus on three themes common to all experimental 
conditions, omitting less related themes for clarity. 

Preference Construction is cited by 97.5% (N=39) of partic-
ipants as a significant source of mental demand, consistent with 
prior literature suggesting that preferences are often constructed in 
context rather than fixed [49]. Specific tasks contributing to this de-
mand include evaluating the relative importance between options 
(e.g., S002  Figuring out[. . . ] how much I prioritize option 1 over 
option 2 , 40% (N=16)), making trade-offs due to limited resources 
(e.g., S005  [. . . ] very hard to take decisions . . . I felt that multiple 
options deserve equal amounts of credit . . . but you have given very 
limited credit. , 42.5% (N=17)), and deciding the exact number of 
votes (e.g., S023  [. . . ] having to pick how many upvotes would go 
to each one , 70% (N=30)). 

Budget Management emerges as a source of both mental and 
temporal demand. 25% (N=10) of participants describe the challenge 
of working with limited credits while trying to maximize their 
allocation (e.g., S032  [. . . ] for certain societal issues, you had 
to . . . take away from other issues you could support ). An equal 
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(a) NASA-TLX Weight Score: The Long Two-Phase Interface exhibits 
the highest weighted cognitive load with a median of 42.70, a mean 
of 42.02. This is higher than the long text interface, which has a 
median cognitive load of 33.85 and a mean of 34.60. However, the 
short text interface demonstrates a higher cognitive load with a 
median of 39.00, a mean of 43.23, compared to the short two-phase 
interface, which has a median of 29.85, a mean of 35.36. The standard 
deviation is similar across groups at around 18. 
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(b) NASA-TLX Cognitive Interpretation: More participants in the short 
text interface, totaling 8, reported a somewhat high or above cognitive 
load, which is significantly higher compared to the 5 participants who 
reported similarly for the short two-phase interface. However, the 
long two-phase interface saw slightly more participants, 6 in total, 
reporting somewhat high or above cognitive load compared to the 
long text interface. 

Figure 7: This figure shows the box plot results for weighted NASA-TLX scores across experiment groups and participant counts 
based on individual score interpretations. In 7a, we observe a downward trend in cognitive load for the short QS, while the long 
QS shows an upward trend. Interestingly, there is a counterintuitive downward trend between short and long text interfaces. 
In 7b, these trends are clearer when NASA-TLX scores are grouped into five tiers. 

Figure 8: Posterior distributions of differences in latent cognitive load between experimental conditions. Values below 0 indicate 
reduced load. Main takeaway: while the model does not indicate statistically significant differences, longer text interfaces are 
more likely to reduce cognitive load, and the two-phase interface has a higher probability of lowering cognitive load. 

percentage of participants find it mentally taxing to keep track of 
remaining credits (e.g., S006  [. . . ] looking at the remaining credits, 
I’m trying to mentally divide that up before I start allocating ). 

When assessing themes across all subscales, we identified pat-
terns that highlights the underlying nature of participants’ cog-
nitive efforts across different contexts. Thus, we also coded inter-
view snippets as Operational and Strategic actions in addition to 

goal-oriented actions such as Budget Management and Preference 
Construction. 

Operational Actions refer to reactive efforts addressing im-
mediate, tactical needs, which emerged across all experimental 
conditions. These actions involve direct task execution, responding 
to constraints without reflection on broader, long-term implica-
tions. Examples include adjusting choices to stay within budget 
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(e.g., S003  I had to alter [. . . ] I kept going under budget ), re-
reading options (e.g., S010  I just had to reread it again ), com-
pleting questions efficiently (e.g., S010  I was trying to be efficient 
in responding to the question ), and interacting with the survey in-
terface (e.g., S018  Like (deciding) one upvote or two upvotes[. . . ] 
). 40% (N=16) of participants attribute Operational actions to tem-
poral demand. Additionally, 37.5% (N=15) attribute this cause to 
frustration, and 32.5% (N=13) attribute it to performance. While 
commonly cited across conditions, its distribution varies. 

5.3 Qualitative Analysis: Different Sources of 
Cognitive Load 

There are several notable differences between the text and two-
phase interfaces. 

First, regardless of length, when analyzing performance, which 
refers to a person’s perception of their success in completing a task, 
participants describe their performances differently. We categorize 
them into indications of satisficing behaviors(“good enough”), ex-
hausting their effort (i.e., “done their best,”), or feeling positive (i.e., 
“feeling good.”) There are almost twice as many participants using 
the two-phase interface to report a positive feeling about their final 
submission (55% v.s 30% (N=11 vs. 6)). 

Second, 70% (N=14) of text interface participants attribute op-
erational actions as contributors to effort, double the percentage 
observed in the two-phase interface group (35%, N=7). This partially 
echoes the finding that 90% (N=18) of text interface participants 
report mental demand from deciding the exact number of votes, 
compared to 60% (N=12) in the two-phase interface group. 

The distinction between the text and two-phase interfaces be-
comes more pronounced in the context of the long survey. 80% 
of the long text interface participants (N=8) attribute operational 
actions to effort, compared to only 20% (N=2) in the long two-phase 
interfaces. Conversely, 90% of long two-phase interface participants 
(N=8) attribute effort to strategic actions, compared to 50% (N=5) 
in the text interface. 

We also found differences in how preference construction dif-
fers in contributing to their mental demand and sources of effort. 
Opposite to operational actions, strategic considerations refer to 
considering about long term goals, determining priorities, consider-
ing broader implications, and considering option’s more holistically. 
Consider the following quotes: 
Trying to figure out what upvotes I should give [. . . ] went back and forth 
between those two. [. . . ] it was very mentally tasking for me. 

 S015 (LT) 

[. . . ] especially with so many different societal issues. How do I personally 
prioritize them? And to what extent do I prioritize them? 

 S009 (L2P) 

S015 describes the operation of locating tasks to find the right 
vote, whereas S009 strategically aligns higher-order values holis-
tically. Regarding mental demand, 80% of participants in the long 
text interface focused on a narrower scope, comparing fewer op-
tions (N=8), while only 30% did so in the two-phase interface (N=3). 
Conversely, 90% of participants in the long two-phase interface 
considered broader societal impacts and evaluated more options 
simultaneously (N=9), compared to 30% in the text interface (N=3). 
Similar distinctions were evident in effort-related sources. 

These differences highlight variations in levels of engagement 
with the survey content. Participants using the two-phase interface 
expressed higher satisfaction with their performance. For the long 
survey, they engaged with broader aspects across different options 
and strategically allocated their credits. 

5.4 Qualitative Analysis: Instances of Satisficing 
When individuals cannot process all available information, prior 
research has found that people exhibit satisficing behaviors, which 
refers to settling for good enough rather than optimal decisions [28]. 
While we did not explicitly ask participants if they ’satisficed,’ nor 
did we measure it quantitatively, we identified satisficing behaviors 
based on participants’ explanations of how they completed the 
survey. For example, 
[. . . ] you thought of enough things, you know, and so it wasn’t the most 
effort I could put in because again, that would have been diminishing returns. 
I tried to think of enough things [. . . ] and then move on. [. . . ] 

 S032 (ST) 

I felt like that (the response) was satisfied, but not perfect. Cause perfect is 
not a reality. 

 S036 (ST) 

This quote illustrates satisficing decision-making, where par-
ticipants chose to settle for suboptimal outcomes. Satisficing was 
observed primarily at the beginning and end of the survey, where 
participants allocated large amounts of credit initially and then 
managed the remaining credits to confirm their final vote alloca-
tions. For instance, 
[. . . ] Because that (the credit) was what was left. [Laughter] I probably 
wouldn’t use that on <optionA> instead of <optionB>. [. . . ] 

 S015 (LT) 

[. . . ] it went negative, and then I just settled for just $6 remaining. [. . . ] I 
don’t think it’s perfect. But I think I’m satisfied. Yeah, I’m satisfied. 

 S033 (LT) 

[. . . ] when I had first started like looking at the first few, I was just doing it 
kinda like willy nilly, I’m not really paying that much attention to necessarily 
how many credits I had, or how many categories there were. 

 S041 (LT) 

Participants also exhibited satisficing behaviors regarding de-
faults, particularly when constructing their preferences. For exam-
ple, participant S003, described how default placements influenced 
their final decisions: 
Honestly, if medical research [. . . ] was the first one I saw, I think it would 
automatically give it a lot more. 

 S003 (ST) 

Our qualitative analysis found that 60% of short-text participants 
(N=6) and 50% of long-text participants (N=5) expressed instances 
of satisficing behaviors when describing how they completed the 
survey, compared to none of the short two-phase participants and 
30% of long-text participants (N=3). These qualitative results high-
lighted potential satisficing behaviors across conditions. 

6 Clickstream data: Interface reduces edit 
distance in long surveys 

Following our findings on cognitive load, we analyze voting behav-
iors to identify differences in how participants cope with survey 
lengths, how interfaces influence their behavior, and why the long 
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text interface might exhibit lower cognitive load. All data are pub-
licly available3 to ensure transparency and support further research. 
This measure reveals how participants navigate and engage with 
survey options. We examine three dimensions of this measure: edit 
distance per option, edit distance per action, and cumulative edit 
distance throughout the survey. 
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Figure 9: Edit Distance Per Option: We sum the total number 
of edit distances for each option, with the figure using the 
radius to indicate how often a specific edit distance occurred 
within an experimental condition. Main takeaway: Partici-
pants in the two-phase interface completed their votes for 
more options with fewer edit distances, whereas the Long 
Text interface shows a long tail of options requiring a wider 
range of edit distances. 

Edit distance per option: We calculate the total number of 
options a participant traversed when adjusting votes for a single 
option. Figure 9 illustrates differences across experimental condi-
tions, with the long text interface showing the largest variance 
in the distance traveled and the highest mean. We implement a 
hierarchical Bayesian framework to model edit distance differences 
across experimental conditions. The observed distance differences 
are modeled using an exponential distribution, where the scale 
parameter is linked to survey length (treated as an ordinal variable), 
interface type (treated as a categorical variable), interaction effects 
between length and interface, and controlling for individual user 
variability. The linear predictor includes a global intercept and slope 
for length, random effects for each interface condition with an LKJ 
prior that captures the correlations among interface categories, and 
user-specific random effects to account for individual heterogeneity. 
Appendix I.1 includes the detailed model. 

Figure 10 illustrates the pairwise posterior distributions for differ-
ences in edit distances across experimental conditions. For example, 
the difference in edit distances between the short and long static 
interfaces has a mode of 9.1, with a 94% highest density interval 
(HDI) of [6, 13]. This indicates that participants in the long text 
interface move approximately 9.1 steps more than those in the short 
text interface, with a high degree of confidence. The effect size is 
large (mode = 5.1, 94% HDI = [3.3, 7.1]), suggesting a statistically 

3https://github.com/CrowdDynamicsLab/Quadratic-Survey-Dataset-and-Analysis 

significant difference, which is expected due to the greater number 
of options in the long text interface. 

Similarly, two-phase interface participants make approximately 
8.9 fewer steps per option (mode = 8.9, 94% HDI = [6.4, 12]) than 
those in the long text interface, with a large effect size (mode = 5.7, 
94% HDI = [4.2, 7.9]). The increase in edit distances between the 
short and long two-phase interfaces is substantially smaller (mode 
= 1.7, 94% HDI = [-0.01, 3.1]) compared to their static counterparts. 
Comparing the short text and short two-phase interfaces shows 
limited difference (mode = 1.3, 94% HDI = [-0.78, 3.8]), though the 
posterior distribution favors fewer steps for the two-phase interface 
(89.3% probability). The model suggests that the two-phase interface 
reduces edit distance per option, particularly for the long QS. 

Edit distance per action: Building on the statistical dispar-
ities observed in the previous analysis and the unique patterns 
exhibited by long text interface participants, we present analyses 
focusing on edit distance per action and cumulative edit distance 
throughout the survey between the long text and long two-phase 
interfaces. Edit distance per action measures how far participants 
move during each adjustment while completing the survey. Fig-
ure 11 illustrates how, at each step, the number of participants 
moving a given distance (represented by the size of the dots) varies 
across experimental conditions. Visually, participants move less 
on average per option within the two-phase interface, with lower 
variance at smaller scales. This indicates that participants are mak-
ing local edits, meaning their adjustments tend to occur near their 
previous edits in terms of edit distance. This also highlights that the 
organization phase effectively adjusts option positions for easier 
access, despite participants still having the freedom to move across 
the interface as all options are presented to them. 

In contrast to earlier analyses, we use a hierarchical Bayesian 
model (detailed in Appendix I.2) to jointly estimate the mean and 
variance of edit distances across experimental conditions. The 
model assumes that edit distances are continuous and follow a 
normal distribution. This approach accounts for both central ten-
dencies and variability, using separate predictors for the mean 
and variance. The model includes hierarchical effects for survey 
length, interface type, interactions between length and interface, 
and user-level random effects. Non-centered parametrization is 
used for survey length and interface type to improve convergence, 
while interaction effects are modeled with an LKJ prior to capture 
the correlations between factors. 

Figure 12 illustrates the posterior variance distributions, confirm-
ing our hypothesis. Participants in the long text interface exhibit 
greater variance in movement, frequently navigating across the 
interface, compared to those in the long two-phase interface. This 
is evidenced by a variance difference mode of 76 (95% HDI = [59, 
99]) and a large effect size (mode = 7.1, 95% HDI = [5.5, 9.2]). 

Cumulative edit distance for a participant: Figure 13 illus-
trates how the two-phase interface reduces per-action distance, 
accumulating over time. Some long text participants traverse dou-
ble the amount of distance to complete the task compared to the 
long two-phase participants. We model this growth rate using a 
hierarchical Bayesian regression model (Detailed in Appendix I.3), 
with cumulative distance as the predictive variable. The experi-
mental variables include interface type as a categorical variable, 
individual users modeled with random effects, and steps taken as 

https://3https://github.com/CrowdDynamicsLab/Quadratic-Survey-Dataset-and-Analysis
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Figure 10: The figure shows the contrast distributions of the mean edit distance per option between pairwise experimental 
conditions, with the first row representing absolute differences and the second row depicting effect sizes. Main takeaway: is 
that participants in the long text estimated more edit distance per option compared to those in the short text and the long 
two-phase condition. Notably, the long two-phase interface required estimated only slightly more edit distances despite the 
longer survey length. 
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Figure 11: Edit Distance Per Action: This plot shows the frequency of specific edit distances at each step across the text interface 
and two-phase interface. Main takeaway: Participants in the long two-phase interface tend to make adjustments closer to their 
previous actions, resulting in visually less variance in edit distances throughout the entire survey. 

a continuous variable. A truncated normal likelihood constrains 
cumulative distances to positive values and varies these distances 
across steps for each participant while masking incomplete data. 

Figure 14 shows that the slope for the long text interface is ap-
proximately 4.7, meaning each step by the text interface would add 
4.7 edit distance (94% HDI = [4.2, 5.4]), compared to the long two-
phase interface, which shows a statistically significant difference 
with a mode of 1.4 (94% HDI = [1.3, 1.7]). These results explain 
that the variance in edit distance per action and the increase in 
per option edit distance are consistent across participants between 
the two groups, showing that the organization phase allows par-
ticipants to focus on adjusting options within proximity without 

having to navigate the interface to locate and make adjustments 
throughout the voting phase. 

Evidence from qualitative analysis: Recall the differences in 
sources of cognitive load between the two experimental conditions: 
while two-phase interface participants make localized adjustments 
with nearby options, they experience cognitive demand from prefer-
ence construction due to broader considerations that involve more 
options and higher-order values. Similarly, the qualitative results 
highlight that long text interface participants construct narrower 
preferences, yet their edit distance indicates broader movements 
across options. 
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Figure 12: Posterior variance differences (left) and effect sizes 
(right) in mean edit distance per step between text and two-
phase interfaces for different survey lengths. Main takeaway: 
The long text interface had greater variance in edit distance 
per step, while differences in the short text condition were 
not statistically significant. 
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Figure 13: Cumulative edit distances over the survey for long 
text and long two-phase groups. Main takeaway: The long 
two-phase interface encourages smaller, incremental adjust-
ments, leading to a flatter slope than the text interface. 
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Figure 14: Posterior distribution of slope differences (left) 
and effect sizes (right) in cumulative edit distance between 
interactive and two-phase interfaces for long QSs. Main take-
away: Participants in the interactive interface made larger 
adjustments compared to the two-phase interface. 

Fewer long two-phase interface participants (60%, N=6) reported 
precise resource allocation as a source of demand compared to 90% 
in the text interface (N=9). We interpret this as former participants 
construct preliminary preferences during the organization phase, 
easing them to concentrate vote decisions as they focus more on 
deliberate preference building rather than mere completion. Con-
veniently positioning options with similar preferences reduced the 
need to look for an option and traverse the interface, allowing 
participants remain engaged in vote adjustments. 

7 Clickstream data: Time participants spent 
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Figure 15: Total Time per Option. Each dot represents the 
time a participant took to complete an option, with the plot’s 
shape showing the distribution within each group. The wider 
it is, the more dots there are. The three horizontal lines indi-
cate the 25th, 50th, and 75th percentile annotated with value. 
The two-phase interface skewed slightly higher than the text 
interface Main takeaway: Two-phase interface participants 
spend longer time per option compared to its counterparts. 

In addition to distance, participants in the short survey took 
an average of 2.7 minutes (short-text: 𝜇=2.3, 𝜎 =1.27; short two-
phase: 𝜇=3, 𝜎 =1.02), while those in the long survey took 9.7 minutes 
(long-text: 𝜇=7.5, 𝜎 =3.45; long two-phase: 𝜇=11.95, 𝜎 =2.73). For a 
fairer comparison of interaction patterns, we analyze total time-
spend-per-option using the QS system logs in this section. For 
participants in the two-phase interface conditions, this includes 
both organization and voting times for that option. The results are 
visualized in Figure 15. 

Overall, participants spent slightly more time per option in the 
two-phase interface than in the text interface. To quantify these 
observations, we model the time data as predictive variables of sep-
arate Gamma distributions to characterize the continuous response 
times observed under distinct experimental conditions defined by 
survey length and interface type (Detailed in Appendix H). Each of 
the four resulting subsets of data is modeled independently, with 
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Figure 16: The figure shows the contrast distributions of the mean time to complete per option between pairwise experimental 
conditions, with the first row representing absolute differences and the second row depicting effect sizes. Main takeaway: is 
that participants in the long two-phase condition spent more time per option compared to those in the long text and short 
two-phase conditions. Additionally, short two-phase participants took longer per option than short text participants. 

separate Gamma-distributed parameters governing the shape and 
rate of each group’s time distributions. 

We calculated the posterior differences between all pairwise 
comparisons of the four groups. The results in Figure 16 indicate 
that participants using the two-phase interface consistently spend 
more time per option than those using the text interface, regardless 
of survey length. For both the short and long QSs, participants most 
likely spend 6.1 seconds (94% HDI = [1.0, 11.0]) and 6.7 seconds (94% 
HDI = [3.7, 9.4]) more per option, respectively, with medium effect 
sizes of 𝑑 =0.49 (94% HDI = [0.077, 0.89]) and 𝑑 =0.41 (94% HDI = 
[0.24, 0.59]). In both cases, the intervals lie outside the ROPE of 0 ± 
1, indicating statistical significance. These findings suggest that the 
two-phase interface encourages longer deliberation, particularly 
for long option surveys. 

Some literature points out that increased time can lead to cog-
nitive fatigue [38, 45], which can impair decision-making. Other 
decision science literature suggests that longer decision times can 
indicate deeper cognitive processing [15, 64]. Our qualitative anal-
ysis points to the latter. 

Descriptively, participants in the long two-phase condition re-
mained actively engaged during the voting phase, editing their votes 
an average of 39.3 times per participant (𝜎 =39.3, range=19 − 63) 
compared to 39.1 times (𝜎 =13.29, range=15−58) in the long text con-
dition. This suggests that the two-phase interface does not reduce 
engagement despite the additional organization step. 

Quantitatively, other than the difference in operational thinking 
and strategic consideration discussed in Section 5.3, we find that 
37.5% of participants (N=15) who attribute time to Decision Making 
as a source of temporal demand frame such demand differently. 
We label a participant as affirmative if they describe the pressure 
to make decisions as a source of temporal demand. For example, 
S022  So it didn’t take too much time, but obviously there were a 
lot of things to consider, so there was some temporal demand. is an 
affirmative statement. Conversely, we label a participant as negative 
if they express concern about the time and effort they have already 

invested. For example, S024  maybe I should just hurry up and 
make a decision. is a negative statement. 

50% of participants (N=5) in the long two-phase group describe 
the pressure to make decisions affirmatively and none negatively. 
This suggests that their pressure stems from having too many 
remaining decisions to make, rather than from the time already 
invested. This is reflected in their higher average time spent per 
option and overall time spent (𝜇=716.86 seconds, 𝜎 =164.04 sec-
onds) completing the QS compared to the long text group (𝜇=449.64 
seconds, 𝜎 =206.97 seconds). We interpret these results that partici-
pants are thoughtfully engaged in constructing their preferences 
and choose to invest additional time, rather than being driven by 
decision-related pressures or experiencing urgency. 

Conversely, in the short text group, 50% of participants (N=5) ex-
press concern about the time and effort they have already invested ( 
S024  maybe I should just hurry up and make a decision. ) and 
none frame it affirmatively. Descriptively, participants in the short 
text group spend comparatively less time than those in the long QS 
(short text: 𝜇=139.83 seconds, 𝜎 =76.43 seconds; short two-phase: 
𝜇=178.78 seconds, 𝜎 =61.07 seconds). This suggests that participants 
in the short text group expect themselves to complete the task 
sooner than they actually do. 

Surprisingly, participants in the long text interface exhibit lower 
temporal demand compared to both the short text and long two-
phase interfaces (Figure 17). Bayesian analysis (Appendix G.2.3) 
supports this finding, with posterior probabilities of 86.1% and 
86.7%, respectively. This result is notable considering participants 
spent more time per option compared to those in the short text 
interface and traversed the longest distance among all three groups 
(Section 6). In addition, only 30% of participants (N=3) mention the 
time spent making a decision as a source of temporal demand. One 
possible explanation is that some participants are satisficing, as we 
pointed out in Section 5.4. 

In summary, we interpret the result that participants in the two-
phase interface spend more time per option as a sign of deeper 
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cognitive processing. This is further supported by examining par-
ticipants’ nuanced voting behaviors under budget constraint con-
ditions for the long QS, which we omit here for brevity. Notably, 
two-phase interface participants make more small vote adjustments 
(i.e., adding or removing at most 2 votes on an option) when they 
have fewer remaining credits, further supporting our claim that 
they experience deeper engagement with preference construction, 
which we elaborate on further in Appendix F. 
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Figure 17: Temporal Demand Raw Score: Each dot represents 
a participant’s subscale response. Main takeaway: Long text 
interface participants seem to express less temporal demand 
compared to the other experiment conditions. 

8 Discussion and Future Work 
In this section, we interpret our findings on cognitive load and re-
spondent behavior in a QS. We highlight the rationale and elements 
behind the two-phase interface for preference construction and 
its potential to mitigate satisficing behaviors. We also offer usage 
and design recommendations for practitioners and outline future 
directions for improving QS interfaces. 

8.1 Two-phase interface: a worthwhile trade-off 
Survey designers seek thoughtful responses from participants. This 
means the interface should balance survey usability, respondent 
satisfaction, and the effort individuals invest in their responses. Our 
results indicate that the two-phase interface encouraged deeper 
participant engagement with the options and reduced satisficing 
behaviors, despite its increased time per option and higher cognitive 
load for the long QSs. 

8.1.1 Analysis through the lens of cognitive load theory. Cognitive 
load theory [86], when applied to QSs, identifies three components 
of cognitive load: intrinsic load (the cognitive demand required 
to understand questions and response options), germane load (as-
sociated with deeper processing and preference evaluation), and 
extraneous load (stemming from navigating and operating the sur-
vey interface). 

Participants were randomly assigned to experimental conditions, 
with survey lengths containing options randomly drawn from a 
common pool to control for intrinsic load within the same group. 

When a QS is short, participants can engage with all options 
simultaneously. Participants using the two-phase interface traded 
a slightly longer survey response time for a potential reduction in 
cognitive load and edit distance. We interpret this as participants 
freeing up cognitive demand from extraneous load for germane load, 
prompting them to better construct and express their preferences. 

When a QS is long, participants face more options, resulting in a 
higher intrinsic load at the start of the survey. We believe the two-
phase interface traded longer survey response time and a potential 
increase in cognitive load for deeper engagement with the survey. 
This heightened cognitive load likely stemmed from making com-
parisons in both the organization and voting phases. Quantitatively, 
participants spent more time per option, suggesting deeper en-
gagement while exerting limited extraneous load, as evidenced by 
shorter traversals during voting. Qualitatively, participants reported 
experiencing demand primarily from strategic considerations (ger-
mane load) rather than operational actions (extraneous load), which 
were common among text interface participants. 

While some might argue that the additional organizing phase 
offers participants more opportunities to familiarize themselves 
with the options compared to text interface participants, the greater 
overall edit distance and high variance in edit distance per option 
suggest that text interface participants traversed the list frequently. 
This finding is further supported by qualitative data, where 70% 
of long-text participants (N=7) reported scanning the list while 
voting. This behavior suggests that while long-text participants 
had opportunities to familiarize themselves with the options, the 
explicit organization phase encouraged deeper reflection on their 
preferences. 

The effect of the two-phase interface shows nuanced differences 
influencing cognitive load outcomes; however, both analyses sug-
gest that the two-phase interface shifted participants’ cognitive 
focus when completing QS. 

8.1.2 Potential in limiting Satisficing. Qualitative findings (Sec-
tion 5.4) on potential satisficing behavior highlight the importance 
of careful consideration when deploying a long QS. However, the 
two-phase interface appeared to limit satisficing behaviors, as evi-
denced by fewer observations compared to the long text interface 
for the long QS and none for the short QS. We believe the potential 
reasons lie in the design of the two-phase interface, which scaffolds 
the preference construction process. 

The deliberate one-option-at-a-time presentation during the vot-
ing task in the two-phase interface reduced reliance on defaults 
and encouraged deeper reflection using cognitive strategies such as 
problem decomposition [81] and dimension reduction, both of which 
are known to reduce cognitive overload. 

When asked about their experience with the interface, four par-
ticipants highlighted how the organization phase supported their 
preference construction. S013 illustrated how the one-option-at-a-
time approach reduced the dimensions of decision-making: 
[. . . ] it (organization phase) gives you time to just focus on that single thing 
and rank it based on how you feel at that moment. 

 S013 (S2P) 
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This focused mode enabled deeper reflection. When consider-
ing relative preferences among QS options, S009 described how it 
structurally decomposed the problem: 
[. . . ] to have a preliminary categorization of all the topics [. . . ] (allowed me) 
to think about and process [. . . ] digest all the information prior to actually 
allocating the budget [. . . ] 

 S009 (L2P) 

This quote highlighted how participants’ deliberation occurred 
during the organization phase, enabling them to focus on construct-
ing preferences without worrying about budget management—both 
of which are cited sources of cognitive load. Although direct mea-
surement of satisficing behavior reduction is challenging, quali-
tative data and participant feedback suggest that the two-phase 
interface potentially limits such behaviors. Based on this evidence, 
we recommend that long QSs be implemented with a two-phase 
interface and sufficient time for participants to complete the pro-
cess. We suggest future research investigate the mental processes 
underlying satisficing behaviors in long QSs. 

In summary, we argue that the trade-off of a longer completion 
time and potentially higher cognitive load in the two-phase inter-
face is justified. Drawing on cognitive load theory, the interface 
fosters deeper engagement with the options. Additionally, our qual-
itative findings and participant feedback suggest that the interface 
may reduce satisficing, aligning with decision-makers’ goals of 
obtaining thoughtful and deliberate responses from participants. 

8.2 Preference Construction guided by 
Organize, Then Vote 

Completing a QS involves a series of in-situ, difficult decision 
tasks as participants construct their preference over unfamiliar 
options [49], as one participant reflected: 
Oh, there are other aspects that I never care about. [. . . ] Why (should) I spend 
money on that? 

 S037 (L2P) 

We believe the two-phase interface supported participants’ pref-
erence construction process when faced with unfamiliar options. 

First, 40% of long-text participants (N=4) found it challenging 
to facilitate differentiation without organization tools that would 
allow grouping or drag-and-drop, as S025 said: 
I would like to be able to like, click and drag the categories themselves so I 
could maybe reorder them to like my priorities. [. . . ] make myself categories 
and subcategories out of this list . . . If I could organize it. 

 S025 (LT) 

In contrast, 60% (N=6) of long two-phase participants appreciated 
the upfront introduction of all options, which enabled them to 
organize and use drag-and-drop features to facilitate QS completion. 
Not only did participants use drag-and-drop options post-voting to 
reflect and ensure correct vote allocation, but drag-and-drop also 
enabled participants, like S039, to make fine-grained comparisons 
between options: 
I think the system was actually really helpful because I could just drag 
them. [. . . ] I can really compare them, I can drag this one up here, and then 
compare it to the top one [. . . ] 

 S039 (S2P) 

This supports our intention of applying Svenson [85]’s differ-
entiation and consolidation theory, in which participants attempt 
to identify differences and eliminate less favorable options. The 

organization phase and the drag-and-drop supported some degree 
of differentiation process. 
[. . . ] the hardest part deciding in which category of place (prefernce bin) 
each issue is. 

 S021 (L2P) 

This quote by S021 best represents the potential of the organi-
zation phase in separating part of the difficult decisions one needs 
to make when differentiating their preferences during preference 
construction. With the selected options, the shorter edit distance 
of long two-phase interface participants suggested that they were 
consolidating their identified preferences through votes. 

8.3 What We Learned: Quadratic Survey Usage 
and Design Recommendations 

This study represents a crucial step toward developing better in-
terfaces to support individuals responding to QSs by providing a 
deeper understanding of how survey respondents interact with QSs 
and the sources of cognitive load. In this subsection, we outline 
usage and design recommendations applicable to all applications 
of the quadratic mechanism. 

8.3.1 QS: Prioritizing Fewer Options or High-Stakes Evaluations. 
We recommend deploying a QS with smaller sets of options or 
for critical evaluations, such as eliciting stakeholders’ preferences 
before making investment decisions in hospital infrastructure. Our 
findings indicate that cognitive challenges and time requirements 
increase significantly as the number of options grows. For a long 
QS, while the two-phase interface helps mitigate some challenges, 
it does not eliminate them entirely, making adequate deliberation 
time essential. If a two-phase interface is unavailable, survey de-
signers should present options in advance to allow participants to 
familiarize themselves and reflect before completing the QS. 

8.3.2 Facilitate Quadratic Mechanism Applications through Cate-
gorization, Not Ranking. In a QS, the final ranking of preferences 
is typically a byproduct of vote allocation rather than a deliberate 
ranking effort. Participants did not explicitly rank options; instead, 
their preferences emerged dynamically through the voting process. 
To better support this preference construction, future quadratic 
mechanism interface designs should focus on helping participants 
categorize options effectively rather than ranking them directly. 
Facilitating differentiation among options is more critical than en-
abling precise manipulation for fine-tuning. We believe this ap-
proach extends beyond QSs to other ranking-based survey tools, 
such as ranked-choice voting and constant-sum surveys. Further 
research should examine how implementing such functionality 
influences survey respondents’ mental models. 

8.4 Future work: Opportunities for Better 
Budget Management 

Budget management emerged as one of the participants’ most 
prominent challenges, which the two-phase interface did not ad-
dress. 35% of participants (N=14) emphasized that current quadratic 
mechanism applications support automated calculations, but noted 
their insufficiency. We identified three challenges for future work: 

First, participants struggled to decide on an initial vote allocation. 
Some distributed credits equally across options, while others used 
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1, 2, or 3 votes as starting points. A few anchored their decisions 
to the tutorial’s example of four upvotes. This suggests a need to 
better understand whether individuals have absolute value prefer-
ences among options. Second, 12.5% of participants (N=5) expressed 
confusion about the relationship between budget, votes, and out-
comes, despite understanding their definitions. They struggled to 
make trade-offs between votes and budget, leading to frustration 
and hampered decision-making. Third, determining the absolute 
amount of credits in a QS is highly demanding. Designing interfaces 
and interactions to address the cold start challenge and help par-
ticipants decide on the absolute vote value, while also considering 
ways to limit direct influences, remains an open question. 

We believe that, with a well-designed interface backed by real-
time computing and a better understanding of how individuals 
calculate trade-offs, we can provide innovative solutions to help 
participants more easily express their preferences using QSs. 

9 Limitations 
Evaluating the QS interface is challenging because of its novelty. 
We identified several limitations that warrant further research. 

Individual differences in cognitive capacity. Variations in individ-
ual cognitive capacity influenced participants’ performance and 
cognitive scores. For example, participants with greater experience 
in decision-making may be better able to manage multiple options. 
A within-subject study could clarify shifts in cognitive load, but 
deconstructing established preferences and altering options intro-
duces additional complexity. Therefore, we opted for this in-depth, 
between-subject study, although the small sample size may intro-
duce noise, potentially distorting the measurement of cognitive 
load. Future research should aim to quantify the impact of differ-
ent QS interfaces on cognitive load at a larger scale. Furthermore, 
participants completed this study in a controlled laboratory envi-
ronment, with options displayed on a large screen. Future work 
should also investigate how individuals respond to QSs on smaller 
devices and in less controlled environments. 

Limited experience with QSs. Participants lacked prior experience 
with the QS interface. After completing a tutorial and quiz, partic-
ipants proceeded to perform tasks using the QS interface. While 
participants understood the mechanics of QSs, their familiarity with 
the interface likely influenced their strategies and cognitive load. 
As quadratic mechanisms become more prevalent, future research 
could compare the performance of novices and experts. 

Limitations of Time and Distance as Proxies for Decision-Making 
Effort. While time and distance are common metrics for quantifying 
the effort involved in decision-making, they do not capture without 
noise. Participants may have considered multiple options simul-
taneously. We acknowledge that these metrics are approximate 
indicators of decision-making effort. Despite these limitations, this 
approach provides valuable insights into decision-making within 
our experimental constraints. 

Other Limitations. Finally, although we observe meaningful trends 
in the Bayesian statistical results, the small sample size limits our 
ability to establish statistical significance in cognitive load differ-
ences. Additionally, despite our best efforts to ensure transparency 

in the qualitative analysis, potential biases may have been intro-
duced by relying on a single coder. Future work should address 
these limitations by incorporating larger sample sizes and multiple 
coders to enhance the reliability and generalizability of findings 
related to cognitive load in QSs. 

10 Conclusion 
This study introduces and evaluates a two-phase “Organize-then-
Vote" interface to help QS respondents construct their preferences. 
We examined how the interface affected cognitive load and response 
behaviors across societal issues of varying lengths through an in-lab 
study, NASA-TLX, and interviews. The interface’s organization and 
voting phases, designed to reduce cognitive overload by structuring 
the decision-making process, allowed respondents to differentiate 
between options before voting. Results revealed that the two-phase 
design reduced participants’ edit distance between vote adjustments 
throughout the survey and they spent more time per option. Quali-
tative insights highlighted that the two-phase interface encouraged 
more iterative and reflective preference construction and its po-
tential for reducing satisficing behaviors even though it did not 
clearly reduce the overall cognitive load for the longer QS. Nonethe-
less, this design shift promoted deeper engagement and strategic 
thinking compared to the text-based interface, by distributing cog-
nitive effort more effectively. By integrating the organization and 
drag-and-drop functions, the interface facilitated both preference 
differentiation and consolidation, making it easier for respondents 
to refine their decisions. This two-phase interface design supports 
the development of future software tools that facilitate preference 
construction and promote the broader adoption of QSs. Future re-
search should explore how to better support individuals’ budget 
allocation and design interfaces for smaller devices. 
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A Interface design process 
In this section, we outline the design process leading to our final 
interface. 

(a) In this paper prototype, issues are denoted by different numbers 
that appear on mouseover. Pretest respondents can move options 
anywhere in the two sections of the interface, one denoting positive 
and one negative. The blocks represent the cost for each option, with 
no indication of the number of current votes. The credits are shown 
in the yellow box on the left. 

(b) This paper prototype separates the positive and negative areas 
with a ’band’ at the center. Undecided options are placed inside this 
band. The cost and the votes on both sides of the interface are denoted 
by small blocks. The budget is shown in the yellow box below the 
interface with a numerical counter. 

Figure 18: Initial paper prototypes designed for QS interface. 

A.1 Prototype 1: Ranking-Vote 
Our first prototype emerged after various paper prototypes, such 
as those shown in Figure 18. Through pre-testing, we observed 
that participants engaging with QS needed interface support for 
organizing options and managing their credits. In this study, we 
decided to focus on the former. 

Since participants needed to position options within the inter-
face, and the end result formed a ranked list, we tested whether 
ranking options before voting would help establish an individual’s 
relative preferences in Prototype 1 ( Figure 19). This prototype al-
lowed respondents to reposition options before voting. However, 
pre-test respondents rarely moved the options and questioned the 
necessity of a full ranking, as it did not influence their QS sub-
mission. Additionally, many were unaware that the options were 
draggable. These findings suggest that a full ranking is unnecessary 
for establishing relative preferences. Therefore, we decided to ask 
respondents to select a subset of options rather than requiring a 
full ranking of all options. 

Figure 19: A Ranking-Vote Prototype: This prototype tests 
whether ranking options prior to voting helps establish an 
individual’s relative preferences. Each option is draggable, 
allowing users to position it within the full list of options. 
Votes can be adjusted using the buttons on the left side of 
the interface, while the vote count and costs are displayed 
on the right. A summary box remains fixed at the bottom of 
the screen for easy reference. 

A.2 Prototype 2: Select-then-Vote 
Based on feedback from Prototype 1, instead of allowing individuals 
to rank options, Prototype 2 implemented a two-phase process that 
intentionally asks respondents to select options to express opinions 
before voting. 

As shown in Figure 20, survey respondents selected their pre-
ferred options (Figure 20a), and the interface positioned these op-
tions at the top of the list for voting (Figure 20b). We identified 
several issues during the prototype 2 pretest: many respondents 
marked most options as ’options they care about,’ which under-
mined the design’s purpose. Additionally, the lack of clear distinc-
tion between selected and unselected options confused respondents 
about the necessity of Step 1. Thus, we need a clearer distinction 
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(a) Options are dragged and dropped to the ’Option You Care About’ 
box. (b) The previous step collapses showing all voting options. 

Figure 20: A Select-then-Vote Prototype: The goal of this prototype is to nudge participants to focus on a subset of options to 
vote, rather than ranking all of them. This prototype introduces a two-step voting process. As shown in Fig. 20a, the first step 
involves selecting options for further consideration. Important options are placed at the top of the list for voting shown in 
Fig. 20b, but options can be placed anywhere on the list if desired. The rest of the controls follows the previous prototype. 

(a) The Organization Interface: Options are shown initially in the 
first bin labeled as ‘I don’t know.’ Survey respondents can then 
drag and drop these options into the latter bins: Lean Positive, 
Lean Neutral, or Lean Negative. Only the details of each option 
are shown on this interface. 

(b) The Voting Interface: Voting controls appear on the left side 
of each option, showing the current votes and associated costs on 
the right. A budget summary sticks to the bottom of the screen. 

Figure 21: Organize-then-Vote Prototype: The goal of this prototype is to encourage participants to derive finer grain categories 
among options before voting. Survey respondents first organize their thoughts into categories and then vote on the options. 
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and connection between the two phases to effectively construct 
relative preferences. 

A.3 Prototype 3: Organize-then-Vote 
Figure 21 shows the final prototype, which builds on our previous 
takeaway by introducing finer-grained groupings and establishing 
a clearer connection between option organization and voting posi-
tion. Specifically, we provided three categories: Lean Positive, Lean 
Negative, and Lean Neutral. Initially, respondents see all options 
listed under a section labeled ’I don’t know,’ which displays only 
the option descriptions and not the vote controls. They are then 
asked to move these options into one of the three categories. On 
the subsequent page, voting controls and additional information 
appear for each option, reinforcing the connection between option 
grouping, position, and voting controls. 

Feedback indicated that survey respondents are comfortable 
with the two-phase organize-then-vote design, demonstrating it 
as a central strategy for our interface development. However, we 
identified several areas for enhancement: First, the dragging and 
dropping mechanism in the organization phase is cumbersome and 
may inadvertently suggest a ranking process, contrary to our inten-
tions. Second, placing unorganized options at the top of the voting 
list is counterintuitive. Third, the voting controls are disconnected 
from the option summaries, dividing attention between the left 
and right sides of the screen. These insights guided refinements in 
the final two-phase interface, adhering to the organize-then-vote 
framework. 

B Voting Interface Breakdown 
In this section, we outline additional literature that informed this 
study. There are two sets of literature that we surveyed: Survey 
response format and voting interfaces. 

B.1 Survey response format 
Research in the marketing and research communities focusing on 
survey and questionnaire design, usability, and interactions exam-
ines the influence of presentation styles and ‘response format.’ Wei-
jters et al. [98] demonstrated that horizontal distances between 
options are more influential than vertical distances, with the latter 
recommended for reduced bias. Slider bars, which operate on a 
drag-and-drop principle, show lower mean scores and higher non-
response rates compared to buttons, indicating they are more prone 
to bias and difficult to use. In contrast, visual analog scales that oper-
ate on a point-and-click principle perform better [90]. These studies 
show how even small design changes can have a large impact on 
usability, highlighting the importance of designing interfaces that 
prioritize human-centered interaction rather than focusing solely 
on functionality. 

B.2 Voting Interfaces 
Compared to digital survey interfaces, voting interfaces are a spe-
cialized type of survey interface can significantly influence demo-
cratic processes [9, 10, 19] and often have consequential impacts. 
We categorize these related works into three main categories de-
tailed below: 

Designs that shifted voter decisions: For example, states without 
straight-party ticket voting (where voters can select all candidates 
from one party through a single choice) exhibited higher rates of 
split-ticket voting [19]. Another example from the Australian ballot 
showing incumbency advantages is where candidates are listed by 
the office they are running for, with no party labels or boxes. 

Designs that influenced errors: Butterfly ballots, an atypical de-
sign, may have influenced the outcome of the 2000 U.S. Presidential 
Election [95]. It increased voter errors because voters could not 
correctly identify the punch hole on the ballot. Splitting contestants 
across columns increases the chance for voters to overvote [69]. On 
the other hand, Everett et al. [20] showed the use of incorporating 
physical voting behaviors, like lever voting, into graphical user 
interfaces increased satisfaction while maintaining efficiency and 
effectiveness. 

Designs that incorporated technologies: Other projects like the 
Caltech-MIT Voting Technology Project addresses accessibility chal-
lenges, resulting in innovations like EZ Ballot [48], Anywhere Bal-
lot [84], and Prime III [16]. In addition, Gilbert et al. [29] investigated 
optimal touchpoints on voting interfaces, and Conrad et al. [11] 
examined zoomable voting interfaces. 

Response format literature and voting interfaces informed how 
interfaces significantly influence respondent behavior, decision 
accuracy, and cognitive load. These burdens are especially problem-
atic for complex systems like QS, where high cognitive demands 
may deter researchers and users alike. Developing effective, human-
centered interfaces for QS could enhance usability, reduce cognitive 
overload, and increase adoption in both research and practical ap-
plications. 

C List of Options 
We provide the full list of options presented on the survey. 

• Animal Rights, Welfare, and Services: Protect animals from 
cruelty, exploitation and other abuses, provide veterinary services 
and train guide dogs. 

• Wildlife Conservation: Protect wildlife habitats, including fish, 
wildlife, and bird refuges and sanctuaries. 

• Zoos and Aquariums: Support and invest in zoos, aquariums 
and zoological societies in communities throughout the country. 

• Libraries, Historical Societies and Landmark Preservation: 
Support and invest public and specialized libraries, historical 
societies, historical preservation programs, and historical estates. 

• Museums: Support and invest in maintaining collections and 
provide training to practitioners in traditional arts, science, tech-
nology, and natural history. 

• Performing Arts: Support symphonies, orchestras, and other 
musical groups; ballets and operas; theater groups; arts festivals; 
and performance halls and cultural centers. 

• Public Broadcasting and Media: Support public television and 
radio stations and networks, as well as providing other indepen-
dent media and communications services to the public. 

• Community Foundations: Promote giving by managing long-
term donor-advised charitable funds for individual givers and 
distributing those funds to community-based charities over time. 
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• Housing and Neighborhood Development: Lead and finance 
development projects that invest in and improve communities 
by providing utility assistance, small business support programs, 
and other revitalization projects. 

• Jewish Federations: Focus on a specific geographic region and 
primarily support Jewish-oriented programs, organizations and 
activities through grantmaking efforts 

• United Ways: Identify and resolve community issues through 
partnerships with schools, government agencies, businesses, and 
others, with a focus on education, income and health. 

• Adult Education Programs and Services: Provide opportuni-
ties for adults to expand their knowledge in a particular field or 
discipline, learn English as a second language, or complete their 
high school education. 

• Early Childhood Programs and Services: Provide foundation-
level learning and literacy for children prior to entering the for-
mal school setting. 

• Education Policy and Reform: Promote and provide research, 
policy, and reform of the management of educational institutions, 
educational systems, and education policy. 

• Scholarship and Financial Support: Support and enable stu-
dents to obtain the financial assistance they require to meet their 
educational and living expenses while in school. 

• Special Education: Provide services, including placement, pro-
gramming, instruction, and support for gifted children and youth 
or those with disabilities requiring modified curricula, teaching 
methods, or materials. 

• Youth Education Programs and Services: Provide program-
ming, classroom instruction, and support for school-aged stu-
dents in various disciplines such as art education, STEM, outward 
bound learning experiences, and other programs that enhance 
formal education. 

• Botanical Gardens, Parks, and Nature Centers: Promote 
preservation and appreciation of the environment, as well as 
leading anti-litter, tree planting and other environmental beauti-
fication campaigns. 

• Environmental Protection and Conservation: Develop strate-
gies to combat pollution, promote conservation and sustainable 
management of land, water, and energy resources, protect land, 
and improve the efficiency of energy and waste material usage. 

• Diseases, Disorders, and Disciplines: Seek cures for diseases 
and disorders or promote specific medical disciplines by provid-
ing direct services, advocating for public support and understand-
ing, and supporting targeted medical research. 

• Medical Research: Devote and invest in efforts on researching 
causes and cures of disease and developing new treatments. 

• Patient and Family Support: Support programs and services 
for family members and patients that are diagnosed with a serious 
illness, including wish granting programs, camping programs, 
housing or travel assistance. 

• Treatment and Prevention Services: Provide direct medical 
services and educate the public on ways to prevent diseases and 
reduce health risks. 

• Advocacy and Education: Support social justice through legal 
advocacy, social action, and supporting laws and measures that 
promote reform and protect civil rights, including election reform 
and tolerance among diverse groups. 

• Development and Relief Services: Provide medical care and 
other human services as well as economic, educational, and agri-
cultural development services to people around the world. 

• Humanitarian Relief Supplies: Specialize in collecting do-
nated medical, food, agriculture, and other supplies and distribut-
ing them overseas to those in need. 

• International Peace, Security, and Affairs: Promote peace 
and security, cultural and student exchange programs, improve 
relations between particular countries, provide foreign policy 
research and advocacy, and United Nations-related organizations. 

• Religious Activities: Support and promote various faiths. 
• Religious Media and Broadcasting: Support organizations 
of all faiths that produce and distribute religious programming, 
literature, and other communications. 

• Non-Medical Science & Technology Research: Support re-
search and services in a variety of scientific disciplines, advancing 
knowledge and understanding of areas such as energy efficiency, 
environmental and trade policies, and agricultural sustainability. 

• Social and Public Policy Research: Support economic and 
social issues impacting our country today, educate the public, 
and influence policy regarding healthcare, employment rights, 
taxation, and other civic ventures. 

D Demographic Breakdown 
Table 1 provides a detailed demographic breakdown per group. 

E Detailed Qualitative Cognitive Load 
Breakdown 

We provide additional details on the six cognitive dimensions. 
Among all dimensions, we also provide the codes representing dif-
ferent types of demand in a table form. The shaded cells represent 
the percentage of participants citing each source of mental demand, 
allowing for comparison within columns. The abbreviations in the 
columns: ST (Short Text Interface), S2P (Short Two-phase Inter-
face), LT (Long Text Interface), and L2P (Long Two-phase Interface). 
Short and Long refer to the sum across both interfaces; Text and 2P 
(Two-phase interface) refer to the sum across both survey lengths. 
We include Sparklines for comparisons across these experiment 
groups. Future studies can use these as initial codebooks to conduct 
interface studies on preference construction. 

E.1 Sources of Mental Demand 
Mental demand refers to the amount of mental and perceptual 
activity required to complete a task. Table 2 lists all qualitative codes 
and Figure 22 shows the boxplot of participant’s subscale response. 
For thematic groups, we grouped them as source of demand (e.g., 
tracking remaining credits) and also of scope (e.g., Operational) as 
separated by the light gray line within each row. 

E.2 Sources of Physical Demand 
Physical demand refers to the physical effort required to complete 
a task, such as physical exertion or movement. Most participants 
reported minimal physical demand (𝑁 = 32), reflected in the low 
NASA-TLX physical demand scores (Figure 23). Notably, 11 out 
of 20 participants who used the two-phase interface mentioned 
physical demand from using the mouse, reflecting interacting with 



Organize, Then Vote: Exploring Cognitive Load in Quadratic Survey Interfaces CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Table 1: Participant Age and Gender Distribution by Experimental Condition 

Condition Mean Age SD Range 25th Median 75th Male Female Non-binary 
Short Text 31.6 13.7 18–67 23.8 29.5 32.8 4 6 0 
Short Two-Phase 32.1 14.0 18–52 20.3 27.0 44.5 4 6 0 
Long Text 36.0 14.8 21–61 24.0 33.0 42.8 2 7 1 
Long Two-Phase 38.8 19.6 19–71 25.0 28.5 53.0 2 8 0 
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Figure 22: Mental Demand Raw Score: 
Across all four experiment groups, par-
ticipants’ reported mental demand is 
spread across a wide range with many 
participants experiencing high mental 
demand. 
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Figure 23: Physical Demand Raw Score: 
Participants other than the long two-
phase interface reported minimal phys-
ical demand. The long two-phase inter-
face had the highest physical demand, 
likely due to increased mouse clicks and 
extended time spent looking at the verti-
cal screen. 
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Figure 24: Effort Raw Score: Effort scores 
show indifference across groups. All 
groups had high variance of responses in-
dicating some participants requires high 
amount of effort when completing QS re-
gardless of length and interface 

two interfaces. This is further supported by the raw NASA-TLX 
physical demand scores (Figure 23), which show a significant visual 
difference between short and long two-phase interfaces as well as 
between text and two-phase interfaces in long surveys. Table 3 
presents all the relevant codes across experiment groups. 

E.3 Source of Effort 
Effort refers to how hard participants felt they worked to achieve the 
level of performance they did. Since effort includes both mental and 
physical resource intensity, refer to Appendix E.1 and Appendix E.2 
for definitions. Raw NASA-TLX effort scores (Figure 24) showed a 
similar spread across experiment groups, the qualitative analysis 
showed more distinction that participants using the two-phase 
interface considered options more comprehensively and felt less 
effort on completing operational tasks, similar to what we found on 
mental demands (Section E.1). For this subscale, we grouped codes 
through the lens of scope. Table 4 contains codes. 

14 of the 20 participants using the text interface mentioned 
operational tasks as a source of effort, compared to 7 participants 
using the two-phase interface, with the lowest mention in the long 
two-phase interface group (𝑁 = 2). 
I wanted to bump up (an option) maybe to 4 or <option> to 5 and realize I 
couldn’t. [. . . ] that would be effort came in of how do I want to really rearrange 
this to make it (the budget spending) maximize? 

 S029 (ST) 

In contrast, strategic planning was reported as an effort source 
by 11 participants in the text interface, compared to 17 participants 
in the two-phase interface, with nearly all participants in the long 
two-phase interface group (𝑁 = 9) expressing effort related to it. In 
this subscale, we further categorize strategic planning into narrow 
and broad scopes as we did for mental demand (Appendix E.1). 
Participants using the two-phase interface (𝑁 = 7) had nearly 
mentioned double (𝑁 = 4) times regarding global strategies. For 
example: 
[. . . ] the effort was how to rank order these (options) and allocate the resources 
behind the upvotes so that I can accurately depict what I want . . . say, a 
committee to focus on and allocate actual fungible resources, too. 

 S019 (L2P) 

E.4 Source from Performance 
Performance refers to a person’s perception of how successfully 
they have completed a task. Lower values indicate good perceived 
performance, while higher values suggest poor perceived perfor-
mance. Raw NASA-TLX scores (Figure 25) show that participants 
had similar performance scores, although we highlighted nuanced 
differences in the main text. In addition to the differences men-
tioned in the main text, an interesting theme that emerged across 
experimental conditions was that participants’ identified that Social 
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Table 2: This table lists all the causes participants mentioned as contributing to their Mental Demand. 

Table 3: Physical Demand Causes: Most participants expressed little or no physical demand. Results reflected that participants 
in the long two-phase interface required more actions, hence the higher mention of mouse usage as a source. 

Table 4: Effort Sources: Participants using the text interface focused more on operational tasks, while those using the two-phase 
interface focused more on strategic planning. 
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Table 5: Performance Causes: Most causes are shared across experiment conditions. We provided qualitative interpretations of 
their own performance assessments. 

Table 6: Temporal Demand Sources: Decision-making and Operational Tasks are the main causes. Participants framed their 
decision-making sources differently. 

Table 7: Frustration Sources: Frustration comes from different levels of strategic operations or operational tasks. 
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Responsibility influenced their performance scores. Table 5 presents 
a detailed breakdown of our codes. 

Social Responsibility. This theme refers to concerns about perfor-
mance when participants reflected on how their final vote counts 
would be perceived by others ( S041  I don’t want people to think 
that I just don’t care about <ethnicity> people at all ) or how their 
votes might influence real-world decision-making ( S027  Some 
of these things might . . . have outcomes that I didn’t foresee ). 
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Figure 25: Performance Demand Raw Score: Partic-
ipants showed indifferent performance raw scores 
across experiment conditions, all trending toward sat-
isfactory. 

E.5 Temporal Demand 
Table 6 lists all the temporal demand codes. 

E.6 Frustration 
Table 7 lists all codes related to participants’ sources of frustration. 

F Additional voting behavior data 
In this section, we describe additional voting behavior that we 
observed. The reason why we decided to focus on the percentage 
of remaining credits comes from prior literature ‘scarcity frames 
value’ [79], a driver that makes researchers believe makes quadratic 
voting more accurate [7]. We did not follow Quarfoot et al. [68] in 
counting accumulated votes over time due to varying total times 
across individuals. 

We observed the number of vote adjustments given a remaining 
vote credit percentage. Figure 27 showed all the voting actions over 
the remaining credit for the four experiment conditions. Here we see 
two distinct patterns between the short survey and the long survey 
in terms of participant behaviors. In long surveys, participants 
exhibited more actions both when the budget was abundant and 
when it began to run out. This pattern was more pronounced with 
the long two-phase interface. This difference is why we further 
focused on the long QS group. 

short 
Text 

short 
2-Phase 

long 
Text 

long 
2-Phase 

0 

20 

40 

60 

80 

100 

Ra
w 

Sc
or

e 

Frustration Raw Scores with 95% CI 

Figure 26: Frustration Raw Score: Participants other 
than the long text interface highlighted several oper-
ational tasks that led to frustration. All groups share 
causes from strategic planning. 

Figure 28 presents the comparison between when participants 
make small or large vote adjustments at different budget levels. 
Revisiting the KDE curve in the second row in Figure 27 and the 
curve of the second row in Figure 28 show a stronger bimodal 
distribution for small vote adjustments across interfaces. In fact, 
the bimodal distribution is more pronounced in the two-phase 
interface. This suggests that participants make small adjustments 
both at the beginning and toward the end of the QS. However, the 
two-phase interface shows more frequent and faster edits towards 
the end. In comparison, participants also made more large vote 
adjustments early on that spread more equally compared to the 
text interface. This indicates that participants had a clearer idea of 
how to distribute their credits across the options. 

G Modeling NASA-TLX Weighted Scores and 
Subscales 

This section first describes the hierarchical Bayesian ordinal regres-
sion model used for the NASA-TLX weighted scores and subscales. 
We then present the results for each subscale. 

G.1 Modeling Approach 
G.1.1 Dependent variables. 

NASA-TLX weighted scores. are transformed from a continuous 
0–100 scale to cognitive levels: low, medium, somewhat high, high, 
and very high, as described by Hart and Staveland [34]. This trans-
formation helps the model adapt to sparse data. In our study, there 
were no participants who expressed "low" or "very high"; thus, we 
modeled the predictive variables as "medium," "somewhat high," 
and "high." 

NASA-TLX subscale ratings. are transformed into ordinal groups 
using minimum frequency binning [25]. Minimum frequency bin-
ning involves grouping adjacent response categories until each bin 
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Figure 27: This plot counts the number of voting actions when there are 𝑥 percentages of credits remaining. A KDE plot is 
provided to help better understand the action distribution. 

Figure 28: This plot further separates participants’ interaction behavior based on the number of votes participants adjusted. We 
observed a bimodal interaction pattern across long QS when small vote adjustments are made. 
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meets a predefined minimum number of observations. Since the 
subscale uses a 21-point Likert scale and we have 40 participants, 
the data are very sparse. Minimum frequency binning mitigates 
this by ensuring similar numbers of participants in each bin. We ap-
plied weighted bins across all participants within the same subscale, 
ensuring that each bin contained at least 10 participants. 

Likelihood. With these ordinal outcome variables, we designed 
𝑦𝑖 as the observed ordinal category for participant 𝑖 . Then: 

𝑦𝑖 ∼ OrderedLogistic(𝜂𝑖 , 𝝉 ), (1) 
where 𝜂𝑖 is the latent predictor, and 𝝉 denotes the cutpoints de-

marcating the boundaries between the ordinal categories as in Equa-
tion (2). The cutpoints 𝝉 ensure that 𝜏1 < 𝜏2 < · · · < 𝜏𝐾 −1 by 
construction. 

𝝉 ∼ OrderedTransform(N (0, 1)𝐾 −1), (2) 

G.1.2 Independent Variables and latent predictor. For this model, 
we used three independent variables: length (𝛾𝑖 , an ordinal variable), 
interface type (𝛽𝐼 , an categorical variable), and the interaction be-
tween the two (𝜙𝑖, 𝑗 ) to construct the latent predictor 𝜂𝑖 . Specifically, 
the latent predictor 𝜂𝑖 is constructed as: 

𝜂𝑖 = 𝛼 + 𝛾𝑖 + 𝛽𝐼 [𝐼𝑖 ] + 𝜙𝑖, 𝑗 , (3)
where: 𝛼 is a global intercept drawn from N (0, 1), 𝛾𝑖 captures 

the (ordinal) effect of length, 𝛽𝐼 [𝐼𝑖 ] is the effect for interface 𝐼𝑖 , and 
𝜙𝑖, 𝑗 is the interaction between length 𝑖 and interface 𝑗 . 

Since length has two levels (short and long), we define the fol-
lowing equation to account for ordinality: 

𝛾𝑖 = 𝜇𝐿 + 𝛽𝐿 · 𝐿𝑖 (4) 

where 𝐿𝑖 ∈ {0, 1}, making 𝛾𝑖 = 𝜇𝐿 for the short condition and 
𝛾𝑖 = 𝜇𝐿 + 𝛽𝐿 for the long condition. We assign standard normal 
priors to these parameters: 𝜇𝐿 ∼ N(0, 1) and 𝛽𝐿 ∼ N (0, 1). 

Interface Effects. We model the interface effects using a non-
centered parameterization to improve numerical stability and en-
courage partial pooling across the two interface levels. Specifically, 
we let 𝜇𝛽𝐼 ∼ N(0, 1) and 𝜎𝛽𝐼 ∼ Exponential(1) represent the shared 
mean and scale of the interface effects. We then sample a raw effect 
vector 𝛽𝐼raw ∼ N(0, 1)2 . Combining these, we define: 

𝛽𝐼 = 𝜇𝛽𝐼 + 𝜎𝛽𝐼 · 𝛽𝐼raw (5) 

where 𝛽𝐼 ∈ R 2 contains the effect for each of the two interface 
levels, and 𝛽𝐼 [𝐼𝑖 ] indexes the effect for participant 𝑖 ’s interface. 

Interaction Effects. To capture potential interaction effects be-
tween length and interface types, we assign one interaction param-
eter, 𝜙𝑖, 𝑗 , to each combination of length 𝑖 and interface 𝑗 . Rather 
than sampling these 𝜙𝑖 , 𝑗 directly, we employ a non-centered param-
eterization: 

𝝓 = 𝐿Ω 
 
𝜎𝜙 ⊙ 𝑧𝜙 

 
, 

where 𝝓 is a 2 × 2 matrix of interaction parameters (since we have 
2 levels of length and 2 levels of interface), 𝑧𝜙 ∼ N (0, 1)2×2 , 𝜎𝜙 ∼ 
Exponential(1)2×2 , and 𝐿Ω is the Cholesky factor of a correlation 
matrix drawn from an LKJ(2) prior. We then define 

𝜙𝑖, 𝑗 = 

𝝓 
 
𝑖, 𝑗 , 

making 𝜙𝑖, 𝑗 a single scalar drawn from the correlated matrix 𝝓. 

G.1.3 Posterior predictive plots. We conducted the Bayesian analy-
sis using NumPyro, a widely used framework for Bayesian inference. 
We used Markov Chain Monte Carlo (MCMC) sampling, a method 
commonly applied in Bayesian inference. The model converged 
successfully, as evidenced by an ˆ 𝑅 value of 1 for each subscale and 
the overall weighted TLX scores, indicating that multiple sampling 
chains converged. We plotted the posterior predictive distribution 
of the model to compare the observed data with the model’s predic-
tions. Figure 29 shows the posterior predictions vs. observed data 
for the six subscales. 

G.2 Model Results 
G.2.1 Mental Subscale. Figure 30 shows pairwise Bayesian results 
from mental demand highlighted 70.4% of posterior probability that 
participants in the long two-phase condition had a higher mental 
demand compared to the short two-phase condition. On the other 
hand, the short text condition had a 74.5% posterior probability of 
having a higher mental demand compared to the short two-phase 
condition. This is additional evidence that prompted us to believe 
that the participants in the short two-phase participants benefited 
from the organization phase. The sheer number of added options in 
the long two-phase condition may have added additional demand 
to participants, leading to higher mental demand. 

G.2.2 Physical Subscale. Figure 31 shows the pairwise compar-
ison of the physical subscale. Notable results show that there is 
a 86.1% posterior probability that the long text condition had a 
lesser physical demand compared to the short text condition. This 
is counter intuitive as the long text participants actually traversed 
much higher edit distances. We are not clear what prompted their 
self reported value and requires future research. 

G.2.3 Temporal Subscale. Figure 32 shows the pairwise compari-
son of the temporal subscale. The results show that the long two-
phase condition once again had a 74.6% posterior probability of 
having a lower temporal demand compared to the short text condi-
tion. Conversely, participants in the long two-phase condition had 
a 71.1% posterior probability of having a higher temporal demand 
compared to the short two-phase condition, reflecting the longer 
time they took to complete the survey questions. We believe that 
the lower temporal demand in the long two-phase condition is 
potential indicator of the participants’ satisficing behavior. 

G.2.4 Performance Subscale. We omit the pairwise comparison of 
the performance subscale due to the mixed signals. We focused on 
the qualitative results analyzed in the main text. 

G.2.5 Effort Subscale. We omit the pairwise comparison of the 
effort subscale due to its similarity to the mental demand subscale. 

G.2.6 Frustration Subscale. Figure 33 shows the pairwise compar-
ison of the frustration subscale. The results show that the long 
two-phase condition had a 68.3% posterior probability of having 
a higher frustration compared to the short two-phase condition, 
likely due to the added number of options to assess. 
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Figure 29: Posterior Predictions vs. observed data for NASA-TLX subscales. The plot shows the observed number of participants 
in each bin compared to the posterior predictions from the model. Takeaway of the plot: We believe that the model is reasonable 
at capturing the distribution of the subscales given the sparsity of the data. 

Figure 30: Differences in the mental subscale scores by version. Main Takeaway: Participants in the long two-phase condition 
show trends to increase mental demand compared to the short two-phase. Within the short text condition, participants in the 
short two-phase condition show a trend to reduce mental demand. 

Figure 31: Differences in the physical subscale scores by version. Main Takeaway: Participants in the long two-phase condition 
show trends to increase physical demand compared to short two-phase and long text despite the long text participants traversing 
higher edit distances. 
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Figure 32: Differences in the temporal subscale scores by version. Main Takeaway: Participants in the long text condition show 
a trend that it reduces temporal demand compared to the short text condition and the long two-phase condition. 
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Figure 33: Differences in the frustration subscale scores by version. Main Takeaway: The model does not see a significant 
difference in the frustration subscale between experiment groups other than a trend for participants in the long two-phase 
condition to have higher frustration than the short two-phase participants. 

H Modeling Total Time 

H.1 Dependent Variables 
The dependent variable is the total time 𝑇𝑖 spent on option 𝑖 mea-
sured in seconds. This measure captures both the duration par-
ticipants took to vote and, where applicable, the time they spent 
organizing or reordering their options beforehand. We categorize 
the data into four experimental conditions: Short Text, Short Two-
Phase, Long Text, and Long Two-Phase. These conditions are in-
dexed by 𝑘 , fit using separate submodels. 

H.2 Modeling Approach 
We modeled the total time for each experimental condition using 
separate Gamma likelihood models. The Gamma distribution is 
well-suited for modeling positive continuous data, such as time 
measurements, which are often skewed and strictly positive. Equa-
tion 6 shows the model for the total time. The shape parameter 𝛼𝑘 
and rate parameter 𝛽𝑘 were each assigned priors drawn from their 
own Gamma distributions, as described in Equations 7 and 8. 

𝑇𝑖 ∼ Gamma(𝛼𝑘 , 𝛽𝑘 ) (6) 
𝛼𝑘 ∼ Gamma(2.0, 0.5) (7) 
𝛽𝑘 ∼ Gamma(1.0, 1.0) (8) 

I Modeling Edit Distance 
This section presents our hierarchical Bayesian approaches for 
analyzing the edit distance data. We first describe a model for edit 

distance per option (Appendix I.1), followed by analysis for edit 
distance per action (Appendix I.2). Finally, we detail a model for 
cumulative edit distances (Appendix I.3). 

I.1 Model 1: Edit Distance per Option 
I.1.1 Likelihood. The dependent variable in this model is the edit 
distance accumulated for each option, denoted by 𝐷𝑖 , where 𝑖 refers 
to the 𝑖 -th observation. Since 𝐷𝑖 must be positive, we model it using 
an exponential likelihood: 

𝐷𝑖 ∼ Exponential 
 
scale = 𝜆𝑖 

 
. (9) 

I.1.2 Independent variables and regression model. We designed 
𝜂𝑖 as the linear predictor that informs 𝐷𝑖 through the following 
transformation: 

𝜆𝑖 = exp(𝜂𝑖 ), (10) 

where 𝜆𝑖 is the scale (i.e., mean) parameter of the Exponential 
distribution, and thus must be positive. 

This linear predictor: 

𝜂𝑖 = 𝛾𝑖 + 𝛽𝐼 [𝐼𝑖 ] + 𝜙𝑖 𝑗 + 𝑈𝑖 (11) 

consists of four components: the length of the option 𝐿𝑖 , interface 
type 𝐼𝑖 , and interaction effect between both length and interface 𝜙𝑖 𝑗 , 
and user effect 𝑈𝑖 which we describe in the following paragraphs. 

Length. Since length has two levels (short and long), we define: 

𝛾𝑖 = 𝜇𝐿 + 𝛽𝐿 · 𝐿𝑖 (12) 
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where 𝐿𝑖 ∈ {0, 1}, making 𝛾𝑖 = 𝜇𝐿 for the short condition and 
𝛾𝑖 = 𝜇𝐿 + 𝛽𝐿 for the long condition. We assign standard normal 
priors to these parameters: 𝜇𝐿 ∼ N (0, 1) and 𝛽𝐿 ∼ N (0, 1). 

Interface. We model the interface effects using a non-centered 
parameterization to improve numerical stability and encourage 
partial pooling across the two interface levels. Specifically we let 
𝜇𝛽𝐼 ∼ N (0, 1) and 𝜎𝛽𝐼 ∼ HalfNormal(0.5) represent the shared 
mean and scale of the interface effects. We then sample a raw effect 
vector 𝛽𝐼raw ∼ N (0, 1)2 . Combining these, we define: 

𝛽𝐼 = 𝜇𝛽𝐼 + 𝜎𝛽𝐼 · 𝛽𝐼raw (13) 

where 𝛽𝐼 ∈ R 2 contains the effect for each of the two interface 
levels, and 𝛽𝐼 [𝐼𝑖 ] indexes the effect for participant 𝑖 ’s interface. 

Interaction Effects. To capture potential interaction effects be-
tween length and interface types, we assign one interaction param-
eter, 𝜙𝑖, 𝑗 , to each combination of length 𝑖 (𝑖 ∈ {0, 1}) for short and 
long surveys and interface 𝑗 ( 𝑗 ∈ {0, 1}) for the two interface types. 
Rather than sampling these 𝜙𝑖, 𝑗 directly, we employ a non-centered 
parameterization: 

𝝓 = 𝐿Ω 
 
𝜎𝜙 ⊙ 𝑧𝜙 

 
, 

where 𝝓 is a 2 × 2 matrix of interaction parameters (since we 
have 2 levels of length and 2 levels of interface), 𝑧𝜙 ∼ N (0, 1)2×2 , 
𝜎𝜙 ∼ HalfNormal(0.5)2×2 , and 𝐿Ω is the Cholesky factor of a 2 × 2 
correlation matrix drawn from an LKJ(2) prior with shape parame-
ter 𝜂 = 3. We then define 

𝜙𝑖 𝑗 = 
 
𝝓 
 
𝑖, 𝑗 (14) 

making 𝜙𝑖 𝑗 a single scalar drawn from the correlated matrix 𝝓. 

Individual user effects. Similar to the interface, we also applied 
a non-centered parameterization to user effects using the same 
approach: 

𝑈𝑖 = 𝜇𝑈 + 𝜎𝑈 · 𝑧𝑈 (15) 
We assign weakly informative priors for the user effects: 𝜇𝑈 ∼ 

N (0, 1) and 𝜎𝑈 ∼ Exponential(0.5), which represent the shared 
mean and scale of the user effects. We use 𝑧𝑈 ∼ N (0, 1)40 . to denote 
the 40 participant’s raw user effect vector. This approach allow us 
to capture user variations across all users. 

I.1.3 Posterior predictive plots. Our Bayesian model converged 
successfully, as evidenced by an ˆ 𝑅 value of 1 in the model summary. 
We plotted the posterior predictive distribution for the edit distance 
per option in Figure 34. This figure compares the models posterior 
predictive distribution with the observed data. 

I.2 Model 2: Edit Distance with Separate Mean 
and Variance Predictors 

I.2.1 Likelihood. The dependent variable for this model is the edit 
distance 𝐷𝑖 , where positive values indicate a downward movement 
and negative values indicate an upward movement. To allow for 
different effects on both the mean and variance, we model 𝐷𝑖 using 
a Normal distribution: 

𝐷𝑖 ∼ N 
 
𝜇𝑖 , 𝜎obs,𝑖 

 
(16) 

Because our aim is to capture potential differences in variability 
(e.g., hypothesizing that a two-phase interface might yield lower 
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Figure 34: Posterior Predictions vs. observed data for edit 
distance per option. Each blue line represents a draw from 
the posterior distribution, while the black line represents 
the observed data. Dotted line represents the mean of the 
posterior data. Takeaway of the plot: We believe that the 
model is reasonable at capturing the distribution. 

oscillation than a text-based interface), we separately model both 
the mean 𝜇𝑖 and the standard deviation 𝜎obs,𝑖 . 

I.2.2 Independent variables and regression model. We specify two 
linear predictors: one for the mean 𝜇𝑖 (Equation 17) and one for the 
(logged) standard deviation log(𝜎obs,𝑖 ) (Equation 18). Both linear 
predictors incorporate the following factors: the length of the option 
𝐿𝑖 , the interface type 𝐼𝑖 , an interaction term 𝜙𝑖 𝑗 , and a user-specific 
term 𝑈𝑖 . 

𝜇𝑖 = 𝛾𝜇,𝑖 + 𝛽𝐼 ,𝜇 [𝐼𝑖 ] + 𝜙𝜇,𝑖 𝑗 + 𝑈𝜇,𝑖 , (17) 
𝑙𝑜𝑔(𝜎obs,𝑖 ) = 𝛾𝜎 ,𝑖 + 𝛽𝐼 ,𝜎 [𝐼𝑖 ] + 𝜙𝜎 ,𝑖 𝑗 + 𝑈𝜎 ,𝑖 . (18) 

Length (𝐿𝑖 ). Similar to the previous model, we continue to define 
length as an ordinal value. In this model, the effect for mean and 
variance are modeled separately. We write: 

𝛾𝜇,𝑖 = 𝜇𝐿,𝜇 + 𝛽𝐿,𝜇 · 𝐿𝑖 , (19) 
𝛾𝜎 ,𝑖 = 𝜇𝐿,𝜎 + 𝛽𝐿,𝜎 · 𝐿𝑖 . (20) 

For both the mean and variance parts, 𝜇𝐿,𝜇 , 𝛽𝐿,𝜇 and 𝜇𝐿,𝜎 , 𝛽𝐿,𝜎 cap-
ture how option length shifts the location and scale of the distribu-
tion, respectively. We assign weakly informative normal priors: 

𝜇𝐿,𝜇 , 𝛽𝐿,𝜇 , 𝜇𝐿,𝜎 , 𝛽𝐿,𝜎 ∼ N (0, 1). (21) 

Interface (𝐼𝑖 ). We treat the interface type as a categorical variable 
with two levels. As in Model 1, we use a non-centered parameter-
ization for numerical stability and partial pooling. For the mean 
part, we define: 

𝛽𝐼 ,𝜇 [𝐼𝑖 ] = 𝜇𝐼 ,𝜇 + 𝜎𝐼 ,𝜇 · 𝑧𝐼 ,𝜇 [𝐼𝑖 ] . (22)

and similarly for the variance part: 

𝛽 𝐼 , 𝜎 [𝐼𝑖 ] = 𝜇𝐼 ,𝜎 + 𝜎𝐼 ,𝜎 · 𝑧𝐼 ,𝜎 [𝐼𝑖 ] . (23) 

We place weakly informative priors on the intercepts: 

𝜇𝐼 ,𝜇 , 𝛽𝐼 ,𝜇 , 𝑧𝐼 ,𝜇 , 𝜇𝐼 ,𝜎 , 𝛽𝐼 ,𝜎 , 𝑧𝐼 ,𝜎 ∼ N (0, 1), (24) 
𝜎𝐼 ,𝜇 , 𝜎𝐼 ,𝜎 ∼ HalfNormal(0.5). (25) 
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Figure 35: Posterior Predictions vs. Observed Data for Edit Distance per Option. The first row represents the distribution of edit 
distance per version. The second row shows the posterior predictions after multiple draws Takeaway of the plot: We believe 
that the model is reasonable at capturing the shape of the distributions though being slightly conservative for extreme values 
at the center. Future model enhancements could re-model them with a student-t distribution. 

. 

Interaction Effects (𝜙𝑖 𝑗 ). We hypothesize that the effect of length 
might vary by interface. Similar to Model 1’s approach, we employ 
a non-centered parameterization with an LKJ correlation prior. 
Specifically, for both the mean and variance parts, we define: 

𝜙𝜇,𝑖 𝑗 = 
 
𝐿Ω,𝜇 , 

 
𝜎𝜙,𝜇 ⊙ 𝑧 𝜙,𝜇 

  
𝑖, 𝑗 , (26) 

𝑝ℎ𝑖𝜎, 𝑖 𝑗 = 
 
𝐿Ω,𝜎 , 

 
𝜎𝜙 ,𝜎 ⊙ 𝑧 𝜙,𝜎 

  
𝑖, 𝑗, (27) 

where 𝑖 ∈ 0, 1 (short or long) and 𝑗 ∈ 0, 1 (two interface types). We 
continue the use of weakly informed priors: 

𝑧 𝜙,𝜇 , 𝑧 𝜙,𝜎 ∼ N (0, 1), 𝜎𝜙 ,𝜇 , 𝜎𝜙 ,𝜎 ∼ HalfNormal(0.5), (28) 
𝐿Ω,𝜇 , 𝐿Ω,𝜎 ∼ LKJ(3). (29) 

Individual user effects (𝑈𝑖 ). To account for participant-level vari-
ability, we follow model 1 and adopt a non-centered parameteri-
zation but allow each user to have a distinct shift on both 𝜇𝑖 and 
log(𝜎obs,𝑖 ): 

𝑈𝜇,𝑖 = 𝜇𝑈 ,𝜇 + 𝜎𝑈 ,𝜇 · 𝑧𝑈 ,𝜇,𝑖 , (30) 
𝑈𝜎 ,𝑖 = 𝜇𝑈 ,𝜎 + 𝜎𝑈 ,𝜎 · 𝑧𝑈 ,𝜎 ,𝑖 , (31) 

with priors: 

𝜇𝑈 ,𝜇 , 𝛽𝑈 ,𝜇 , 𝑧𝑈 ,𝜇,𝑖 , 𝜇𝑈 ,𝜎 , 𝛽𝑈 ,𝜎 , 𝑧𝑈 ,𝜎 ,𝑖 ∼ N (0, 1), (32) 
𝜎𝑈 ,𝜇 , 𝜎𝑈 ,𝜎 ∼ HalfNormal(0.5) . (33) 

I.2.3 Posterior predictive plots. Our Bayesian model converged 
successfully, as evidenced by an ˆ 𝑅 value of 1 in the model summary. 
We plotted the posterior predictive distribution for the edit distance 
per option in Figure 35. This figure compares the models posterior 
predictive distribution with the observed data. 

I.2.4 Model Results. Figure 36 shows the pairwise comparison of 
the variance of edit distance in the first row followed by the effect 
size in the second row. In addition to the comparison within the 
same survey length, we provide all pairwise comparisons. A notable 
result that we omit from the main text is that if we compare the 
variance between the long and short text, and the variance between 
the long and short two-phase, we see that the text group had three 
times the standard deviation compared to the two-phase group. This 
indicates that the organization phase minimize the edit distance 
despite the increase in survey length. 

I.3 Model 3: Long QS Cumulative Edit Distance 
The dependent variable for this model is the cumulative edit dis-
tance 𝐷𝑖 , a positive continuous variable measured at each step 
within a version for each user. We modeled this to test our hypoth-
esis that for each participant, the growth rate of the edit distance is 
consistent. To accommodate its positive nature, we model 𝐷𝑖 using 
a Truncated Normal distribution: 

𝐷𝑖 ∼ TruncatedNormal(𝜇𝑖 , 𝜎obs,𝑖 , lower = 0), (34) 
where the observation-specific standard deviation prior is: 

𝜎obs,𝑖 ∼ HalfNormal(0.3). (35) 

I.3.1 Independent Variables and Regression Model. We incorporate 
the following independent variables: the step number when com-
pleting QS (𝑆𝑖 ), the interface version (𝑉𝑖 ), and user-specific effects 
(𝑈𝑖 ). The interface version and user-specific effects are modeled 
using hyperpriors to capture variability across groups. 

The linear predictor for 𝐷𝑖 is given by: 

𝜇𝑖 = 𝛼shared + 𝛽𝑣 [𝑉𝑖 ] · 𝑆𝑖 + 𝑈𝑖 · 𝑆𝑖 , (36) 
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Figure 36: Differences in the variance of edit distance by version. Main takeaway: This plot shows that with two-phase interface, 
there is a reduction in edit distance variance when the number of option grows. 
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Figure 37: Posterior Predictions vs. observed data for cumu-
lative edit distance. The plot showed each observed user’s cu-
mulative edit distance in different shades for the two groups 
of participants. Dotted line represent the posterior predictive 
mean. Takeaway of the plot: We believe that the model is 
reasonable at capturing slop of the cumulative trends. 

where 𝛼shared represents the global intercept, 𝛽𝑣 [𝑉𝑖 ] models the 
interface version effects, and 𝑈𝑖 captures individual user-specific 
effects. The intercept is assigned the following prior: 

𝛼shared ∼ N (2.0, 0.5). (37) 

Interface Version (𝑉𝑖 ). Interface effects are modeled as: 

𝛽𝑣 [𝑉𝑖 ] ∼ N (𝜇𝛽 , 𝜎𝛽 ), (38) 

where the hyperparameters for the interface effect distribution are: 

𝜇𝛽 ∼ N (0.05, 0.05), 𝜎𝛽 ∼ HalfNormal(0.1). (39) 

User Effects (𝑈𝑖 ). Instead of directly sampling 𝑈𝑖 , we follow the 
reparameterization approach: 

𝑈𝑖 = 𝜇𝑈 + 𝜎𝑈 · 𝑧𝑈 ,𝑖 , (40) 

where we assign weakly informative priors 𝜇𝑈 ∼ N (0, 1) and 
𝜎𝑈 ∼ HalfNormal(0.1) to represent the shared mean and scale 
of the user effects. The term 𝑧𝑈 ,𝑖 ∼ N (0, 1) captures individual 
user variability, allowing us to model deviations across users while 
maintaining a structured prior. 

I.3.2 Posterior Predictive Plots. Our Bayesian model converged 
successfully, as indicated by an ˆ 𝑅 value of 1 in the model summary. 
Figure 37 presents the posterior predictive distribution for cumula-
tive edit distance, demonstrating alignment between the predicted 
and observed data. 
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